Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures
Yue Wu,
Jie Xiang,
Chen Yang,
Wei Lu and
Charles M. Lieber ()
Additional contact information
Yue Wu: Harvard University
Jie Xiang: Harvard University
Chen Yang: Harvard University
Wei Lu: Harvard University
Charles M. Lieber: Harvard University
Nature, 2004, vol. 430, issue 6995, 61-65
Abstract:
Abstract Substantial effort has been placed on developing semiconducting carbon nanotubes1,2,3 and nanowires4 as building blocks for electronic devices—such as field-effect transistors—that could replace conventional silicon transistors in hybrid electronics or lead to stand-alone nanosystems4,5. Attaching electric contacts to individual devices is a first step towards integration, and this step has been addressed using lithographically defined metal electrodes1,2,3,4,6,7,8. Yet, these metal contacts define a size scale that is much larger than the nanometre-scale building blocks, thus limiting many potential advantages. Here we report an integrated contact and interconnection solution that overcomes this size constraint through selective transformation of silicon nanowires into metallic nickel silicide (NiSi) nanowires. Electrical measurements show that the single crystal nickel silicide nanowires have ideal resistivities of about 10 µΩ cm and remarkably high failure-current densities, >108 A cm-2. In addition, we demonstrate the fabrication of nickel silicide/silicon (NiSi/Si) nanowire heterostructures with atomically sharp metal–semiconductor interfaces. We produce field-effect transistors based on those heterostructures in which the source–drain contacts are defined by the metallic NiSi nanowire regions. Our approach is fully compatible with conventional planar silicon electronics and extendable to the 10-nm scale using a crossed-nanowire architecture.
Date: 2004
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/nature02674 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:430:y:2004:i:6995:d:10.1038_nature02674
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/nature02674
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().