EconPapers    
Economics at your fingertips  
 

Recognition of RNA polymerase II carboxy-terminal domain by 3′-RNA-processing factors

Anton Meinhart and Patrick Cramer ()
Additional contact information
Anton Meinhart: Gene Center, University of Munich
Patrick Cramer: Gene Center, University of Munich

Nature, 2004, vol. 430, issue 6996, 223-226

Abstract: Abstract During transcription, RNA polymerase (Pol) II synthesizes eukaryotic messenger RNA. Transcription is coupled to RNA processing by the carboxy-terminal domain (CTD) of Pol II, which consists of up to 52 repeats of the sequence Tyr 1-Ser 2-Pro 3-Thr 4-Ser 5-Pro 6-Ser 7 (refs 1, 2). After phosphorylation, the CTD binds tightly to a conserved CTD-interacting domain (CID) present in the proteins Pcf11 and Nrd1, which are essential and evolutionarily conserved factors for polyadenylation-dependent and -independent 3′-RNA processing, respectively. Here we describe the structure of a Ser 2-phosphorylated CTD peptide bound to the CID domain of Pcf11. The CTD motif Ser 2-Pro 3-Thr 4-Ser 5 forms a β-turn that binds to a conserved groove in the CID domain. The Ser 2 phosphate group does not make direct contact with the CID domain, but may be recognized indirectly because it stabilizes the β-turn with an additional hydrogen bond. Iteration of the peptide structure results in a compact β-spiral model of the CTD. The model suggests that, during the mRNA transcription-processing cycle, compact spiral regions in the CTD are unravelled and regenerated in a phosphorylation-dependent manner.

Date: 2004
References: Add references at CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
https://www.nature.com/articles/nature02679 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:430:y:2004:i:6996:d:10.1038_nature02679

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/nature02679

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:nature:v:430:y:2004:i:6996:d:10.1038_nature02679