EconPapers    
Economics at your fingertips  
 

Optimal neural population coding of an auditory spatial cue

Nicol S. Harper and David McAlpine ()
Additional contact information
Nicol S. Harper: University College London
David McAlpine: University College London

Nature, 2004, vol. 430, issue 7000, 682-686

Abstract: Abstract A sound, depending on the position of its source, can take more time to reach one ear than the other. This interaural (between the ears) time difference (ITD) provides a major cue for determining the source location1,2. Many auditory neurons are sensitive to ITDs3,4, but the means by which such neurons represent ITD is a contentious issue. Recent studies question whether the classical general model (the Jeffress model5) applies across species6,7. Here we show that ITD coding strategies of different species can be explained by a unifying principle: that the ITDs an animal naturally encounters should be coded with maximal accuracy. Using statistical techniques and a stochastic neural model, we demonstrate that the optimal coding strategy for ITD depends critically on head size and sound frequency. For small head sizes and/or low-frequency sounds, the optimal coding strategy tends towards two distinct sub-populations tuned to ITDs outside the range created by the head. This is consistent with recent observations in small mammals6,7. For large head sizes and/or high frequencies, the optimal strategy is a homogeneous distribution of ITD tunings within the range created by the head. This is consistent with observations in the barn owl8,9,10. For humans, the optimal strategy to code ITDs from an acoustically measured distribution depends on frequency; above 400 Hz a homogeneous distribution is optimal, and below 400 Hz distinct sub-populations are optimal.

Date: 2004
References: Add references at CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
https://www.nature.com/articles/nature02768 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:430:y:2004:i:7000:d:10.1038_nature02768

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/nature02768

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:nature:v:430:y:2004:i:7000:d:10.1038_nature02768