Reading the Hedgehog morphogen gradient by measuring the ratio of bound to unbound Patched protein
Andreu Casali and
Gary Struhl ()
Additional contact information
Andreu Casali: Columbia University
Gary Struhl: Columbia University
Nature, 2004, vol. 431, issue 7004, 76-80
Abstract:
Abstract Morphogens are ‘form-generating’ substances that spread from localized sites of production and specify distinct cellular outcomes at different concentrations. A cell's perception of morphogen concentration is thought to be determined by the number of active receptors, with inactive receptors making little if any contribution1. Patched (Ptc)2,3,4,5, the receptor for the morphogen Hedgehog (Hh)6,7,8,9,10,11,12, is active in the absence of ligand and blocks the expression of target genes by inhibiting Smoothened (Smo), an essential transducer of the Hh signal3,13,14,15,16. Hh binding to Ptc abrogates the ability of Ptc to inhibit Smo, thereby unleashing Smo activity and inducing target gene expression2,3,12,13,14,15,16. Here, we show that a cell's measure of ambient Hh concentration is not determined solely by the number of active (unliganded) Ptc molecules. Instead, we find that Hh-bound Ptc can titrate the inhibitory action of unbound Ptc. Furthermore, we demonstrate that this effect is sufficient to allow normal reading of the Hh gradient in the presence of a form of Ptc that cannot bind the ligand12 but retains its ability to inhibit Smo. These results support a model in which the ratio of bound to unbound Ptc molecules determines the cellular response to Hh.
Date: 2004
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.nature.com/articles/nature02835 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:431:y:2004:i:7004:d:10.1038_nature02835
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/nature02835
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().