EconPapers    
Economics at your fingertips  
 

Inscribed matter as an energy-efficient means of communication with an extraterrestrial civilization

Christopher Rose () and Gregory Wright
Additional contact information
Christopher Rose: Rutgers University
Gregory Wright: Antiope Associates

Nature, 2004, vol. 431, issue 7004, 47-49

Abstract: Abstract It is well known that electromagnetic radiation—radio waves—can in principle be used to communicate over interstellar distances1,2. By contrast, sending physical artefacts has seemed extravagantly wasteful of energy, and imagining human travel between the stars even more so3,4. The key consideration in earlier work, however, was the perceived need for haste. If extraterrestrial civilizations existed within a few tens of light years, radio could be used for two-way communication on timescales comparable to human lifetimes (or at least the longevities of human institutions). Here we show that if haste is unimportant, sending messages inscribed on some material can be strikingly more energy efficient than communicating by electromagnetic waves. Because messages require protection from cosmic radiation and small messages could be difficult to find among the material clutter near a recipient, ‘inscribed matter’ is most effective for long archival messages (as opposed to potentially short “we exist” announcements). The results suggest that our initial contact with extraterrestrial civilizations may be more likely to occur through physical artefacts—essentially messages in a bottle—than via electromagnetic communication.

Date: 2004
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/nature02884 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:431:y:2004:i:7004:d:10.1038_nature02884

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/nature02884

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:nature:v:431:y:2004:i:7004:d:10.1038_nature02884