EconPapers    
Economics at your fingertips  
 

The rice leaf blast pathogen undergoes developmental processes typical of root-infecting fungi

Ane Sesma and Anne E. Osbourn ()
Additional contact information
Ane Sesma: John Innes Center
Anne E. Osbourn: John Innes Center

Nature, 2004, vol. 431, issue 7008, 582-586

Abstract: Abstract Pathogens have evolved different strategies to overcome the various barriers that they encounter during infection of their hosts1. The rice blast fungus Magnaporthe grisea causes one of the most damaging diseases of cultivated rice and has emerged as a paradigm system for investigation of foliar pathogenicity. This fungus undergoes a series of well-defined developmental steps during leaf infection, including the formation of elaborate penetration structures (appressoria). This process has been studied in great detail2, and over thirty M. grisea genes that condition leaf infection have been identified3. Here we show a new facet of the M. grisea life cycle: this fungus can undergo a different (and previously uncharacterized) set of programmed developmental events that are typical of root-infecting pathogens. We also show that root colonization can lead to systemic invasion and the development of classical disease symptoms on the aerial parts of the plant. Gene-for-gene type specific disease resistance that is effective against rice blast in leaves also operates in roots. These findings have significant implications for fungal development, epidemiology, plant breeding and disease control.

Date: 2004
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/nature02880 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:431:y:2004:i:7008:d:10.1038_nature02880

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/nature02880

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:nature:v:431:y:2004:i:7008:d:10.1038_nature02880