EconPapers    
Economics at your fingertips  
 

Excitation of Earth's continuous free oscillations by atmosphere–ocean–seafloor coupling

Junkee Rhie and Barbara Romanowicz ()
Additional contact information
Junkee Rhie: University of California
Barbara Romanowicz: University of California

Nature, 2004, vol. 431, issue 7008, 552-556

Abstract: Abstract The Earth undergoes continuous oscillations, and free oscillation peaks have been consistently identified in seismic records in the frequency range 2–7 mHz (refs 1, 2), on days without significant earthquakes. The level of daily excitation of this ‘hum’ is equivalent to that of magnitude 5.75 to 6.0 earthquakes3,4, which cannot be explained by summing the contributions of small earthquakes1,3. As slow or silent earthquakes have been ruled out as a source for the hum4 (except in a few isolated cases5), turbulent motions in the atmosphere or processes in the oceans have been invoked3,6,7,8 as the excitation mechanism. We have developed an array-based method to detect and locate sources of the excitation of the hum. Our results demonstrate that the Earth's hum originates mainly in the northern Pacific Ocean during Northern Hemisphere winter, and in the Southern oceans during Southern Hemisphere winter. We conclude that the Earth's hum is generated by the interaction between atmosphere, ocean and sea floor, probably through the conversion of storm energy to oceanic infragravity waves that interact with seafloor topography.

Date: 2004
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/nature02942 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:431:y:2004:i:7008:d:10.1038_nature02942

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/nature02942

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:nature:v:431:y:2004:i:7008:d:10.1038_nature02942