The building blocks of planets within the ‘terrestrial’ region of protoplanetary disks
R. van Boekel (),
M. Min,
Ch. Leinert,
L.B.F.M. Waters,
A. Richichi,
O. Chesneau,
C. Dominik,
W. Jaffe,
A. Dutrey,
U. Graser,
Th. Henning,
J. de Jong,
R. Köhler,
A. de Koter,
B. Lopez,
F. Malbet,
S. Morel,
F. Paresce,
G. Perrin,
Th. Preibisch,
F. Przygodda,
M. Schöller and
M. Wittkowski
Additional contact information
R. van Boekel: University of Amsterdam
M. Min: University of Amsterdam
Ch. Leinert: Max-Planck-Institut für Astronomie Heidelberg
L.B.F.M. Waters: University of Amsterdam
A. Richichi: European Southern Observatory
O. Chesneau: Max-Planck-Institut für Astronomie Heidelberg
C. Dominik: University of Amsterdam
W. Jaffe: Leiden Observatory
A. Dutrey: Observatoire de Bordeaux
U. Graser: Max-Planck-Institut für Astronomie Heidelberg
Th. Henning: Max-Planck-Institut für Astronomie Heidelberg
J. de Jong: Leiden Observatory
R. Köhler: Max-Planck-Institut für Astronomie Heidelberg
A. de Koter: University of Amsterdam
B. Lopez: Département Fresnel UMR 6528
F. Malbet: Observatoire de Bordeaux
S. Morel: European Southern Observatory
F. Paresce: European Southern Observatory
G. Perrin: Observatoire de Paris, section de Meudon
Th. Preibisch: Max-Planck-Institut für Radioastronomie
F. Przygodda: Max-Planck-Institut für Astronomie Heidelberg
M. Schöller: European Southern Observatory
M. Wittkowski: European Southern Observatory
Nature, 2004, vol. 432, issue 7016, 479-482
Abstract:
Abstract Our Solar System was formed from a cloud of gas and dust. Most of the dust mass is contained in amorphous silicates1, yet crystalline silicates are abundant throughout the Solar System, reflecting the thermal and chemical alteration of solids during planet formation. (Even primitive bodies such as comets contain crystalline silicates2.) Little is known about the evolution of the dust that forms Earth-like planets. Here we report spatially resolved detections and compositional analyses of these building blocks in the innermost two astronomical units of three proto-planetary disks. We find the dust in these regions to be highly crystallized, more so than any other dust observed in young stars until now. In addition, the outer region of one star has equal amounts of pyroxene and olivine, whereas the inner regions are dominated by olivine. The spectral shape of the inner-disk spectra shows surprising similarity with Solar System comets. Radial-mixing models naturally explain this resemblance as well as the gradient in chemical composition. Our observations imply that silicates crystallize before any terrestrial planets are formed, consistent with the composition of meteorites in the Solar System.
Date: 2004
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/nature03088 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:432:y:2004:i:7016:d:10.1038_nature03088
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/nature03088
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().