EconPapers    
Economics at your fingertips  
 

Stabilization of microtubule dynamics at anaphase onset promotes chromosome segregation

Toru Higuchi and Frank Uhlmann ()
Additional contact information
Toru Higuchi: Cancer Research UK London Research Institute, Lincoln's Inn Fields Laboratories
Frank Uhlmann: Cancer Research UK London Research Institute, Lincoln's Inn Fields Laboratories

Nature, 2005, vol. 433, issue 7022, 171-176

Abstract: Abstract Microtubules of the mitotic spindle form the structural basis for chromosome segregation. In metaphase, microtubules show high dynamic instability, which is thought to aid the ‘search and capture’ of chromosomes for bipolar alignment on the spindle. Microtubules suddenly become more stable at the onset of anaphase, but how this change in microtubule behaviour is regulated and how important it is for the ensuing chromosome segregation are unknown1,2,3,4. Here we show that in the budding yeast Saccharomyces cerevisiae, activation of the phosphatase Cdc14 at anaphase onset is both necessary and sufficient for silencing microtubule dynamics. Cdc14 is activated by separase, the protease that triggers sister chromatid separation, linking the onset of anaphase to microtubule stabilization5,6. If sister chromatids separate in the absence of Cdc14 activity, microtubules maintain high dynamic instability; this correlates with defects in both the movement of chromosomes to the spindle poles (anaphase A) and the elongation of the anaphase spindle (anaphase B). Cdc14 promotes localization of microtubule-stabilizing proteins to the anaphase spindle, and dephosphorylation of the kinetochore component Ask1 contributes to both the silencing of microtubule turnover and successful anaphase A.

Date: 2005
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/nature03240 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:433:y:2005:i:7022:d:10.1038_nature03240

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/nature03240

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:nature:v:433:y:2005:i:7022:d:10.1038_nature03240