Subducted banded iron formations as a source of ultralow-velocity zones at the core–mantle boundary
David P. Dobson () and
John P. Brodholt
Additional contact information
David P. Dobson: University College London
John P. Brodholt: University College London
Nature, 2005, vol. 434, issue 7031, 371-374
Abstract:
Abstract Ultralow-velocity zones (ULVZs) are regions of the Earth's core–mantle boundary about 1–10 kilometres thick exhibiting seismic velocities that are lower than radial-Earth reference models by about 10–20 per cent for compressional waves and 10–30 per cent for shear waves. It is also thought that such regions have an increased density of about 0–20 per cent (ref. 1). A number of origins for ULVZs have been proposed, such as ponding of dense silicate melt2, core–mantle reaction zones3 or underside sedimentation from the core4. Here we suggest that ULVZs might instead be relics of banded iron formations subducted to the core–mantle boundary between 2.8 and 1.8 billion years ago. Consisting mainly of interbedded iron oxides and silica, such banded iron formations were deposited in the world's oceans during the late Archaean and early Proterozoic eras. We argue that these layers, as part of the ocean floor, would be recycled into the Earth's interior by subduction5, sink to the bottom of the mantle and may explain all of the observed features of ULVZs.
Date: 2005
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.nature.com/articles/nature03430 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:434:y:2005:i:7031:d:10.1038_nature03430
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/nature03430
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().