An infrared flash contemporaneous with the γ-rays of GRB 041219a
C. H. Blake,
J. S. Bloom (),
D. L. Starr,
E. E. Falco,
M. Skrutskie,
E. E. Fenimore,
G. Duchêne,
A. Szentgyorgyi,
S. Hornstein,
J. X. Prochaska,
C. McCabe,
A. Ghez,
Q. Konopacky,
K. Stapelfeldt,
K. Hurley,
R. Campbell,
M. Kassis,
F. Chaffee,
N. Gehrels,
S. Barthelmy,
J. R. Cummings,
D. Hullinger,
H. A. Krimm,
C. B. Markwardt,
D. Palmer,
A. Parsons,
K. McLean and
J. Tueller
Additional contact information
C. H. Blake: Harvard College Observatory
J. S. Bloom: Harvard College Observatory
D. L. Starr: Gemini Observatory
E. E. Falco: Smithsonian Astrophysical Observatory
M. Skrutskie: University of Virginia
E. E. Fenimore: Los Alamos National Laboratory
G. Duchêne: Observatoire de Grenoble
A. Szentgyorgyi: Smithsonian Astrophysical Observatory
S. Hornstein: University of California
J. X. Prochaska: UCO/Lick Observatory
C. McCabe: California Institute of Technology
A. Ghez: University of California
Q. Konopacky: University of California
K. Stapelfeldt: California Institute of Technology
K. Hurley: University of California
R. Campbell: W.M. Keck Observatories
M. Kassis: W.M. Keck Observatories
F. Chaffee: W.M. Keck Observatories
N. Gehrels: NASA Goddard Space Flight Center
S. Barthelmy: NASA Goddard Space Flight Center
J. R. Cummings: NASA Goddard Space Flight Center
D. Hullinger: NASA Goddard Space Flight Center
H. A. Krimm: NASA Goddard Space Flight Center
C. B. Markwardt: NASA Goddard Space Flight Center
D. Palmer: Los Alamos National Laboratory
A. Parsons: NASA Goddard Space Flight Center
K. McLean: Los Alamos National Laboratory
J. Tueller: NASA Goddard Space Flight Center
Nature, 2005, vol. 435, issue 7039, 181-184
Abstract:
Abstract The explosion that results in a cosmic γ-ray burst (GRB) is thought to produce emission from two physical processes: the central engine gives rise to the high-energy emission of the burst through internal shocking1, and the subsequent interaction of the flow with the external environment produces long-wavelength afterglows2,3,4. Although observations of afterglows5 continue to refine our understanding of GRB progenitors and relativistic shocks, γ-ray observations alone have not yielded a clear picture of the origin of the prompt emission6 nor details of the central engine. Only one concurrent visible-light transient has been found7 and it was associated with emission from an external shock. Here we report the discovery of infrared emission contemporaneous with a GRB, beginning 7.2 minutes after the onset of GRB 041219a (ref. 8). We acquired 21 images during the active phase of the burst, yielding early multi-colour observations. Our analysis of the initial infrared pulse suggests an origin consistent with internal shocks.
Date: 2005
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/nature03520 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:435:y:2005:i:7039:d:10.1038_nature03520
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/nature03520
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().