Breaking of Henry's law for noble gas and CO2 solubility in silicate melt under pressure
Philippe Sarda () and
Bertrand Guillot
Additional contact information
Philippe Sarda: Université Paris Sud, UMR CNRS 8148 (IDES)
Bertrand Guillot: Université Pierre et Marie Curie, UMR CNRS 7600
Nature, 2005, vol. 436, issue 7047, 95-98
Abstract:
Abstract Degassing of the Earth is still poorly understood, as is the large scatter in He/Ar ratios observed in mid-ocean ridge basalts. A possible explanation for such observations is that vesiculation occurs at great depths with noble-gas solubilities different from those measured at 1 bar (ref. 1). Here we develop a hard-sphere model for noble-gas solubility and find that, owing to melt compaction, solubility may decrease by several orders of magnitude when pressure increases, an effect subtly overbalanced by the compression of the fluid phase. Our results satisfactorily explain recent experimental data on argon solubility in silicate melts, where argon concentration increases almost linearly with pressure, then levels off at pressures of 50–100 kbar (refs 2–5). We also model vesiculation during magma ascent at ridges and find that noble-gas partitioning between melt and CO2 vesicles at depth differs significantly from that at low pressure. Starting at 10 kbar (∼35 km depth), several stages of vesiculation occur followed by vesicle loss, which explains the broad variability of He–Ar concentration data in mid-ocean ridge basalts. ‘Popping rocks’, exceptional samples with high vesicularity, may represent fully vesiculated ridge magma, whereas common samples would simply have lost such vesicles.
Date: 2005
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/nature03636 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:436:y:2005:i:7047:d:10.1038_nature03636
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/nature03636
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().