EconPapers    
Economics at your fingertips  
 

Gli3 and Plzf cooperate in proximal limb patterning at early stages of limb development

Maria Barna, Pier Paolo Pandolfi and Lee Niswander ()
Additional contact information
Maria Barna: Weill Graduate School of Medical Sciences of Cornell University
Pier Paolo Pandolfi: Cancer Biology and Genetics Program
Lee Niswander: Developmental Biology Program

Nature, 2005, vol. 436, issue 7048, 277-281

Abstract: Abstract The vertebrate limb initially develops as a bud of mesenchymal cells that subsequently aggregate in a proximal to distal (P–D) sequence to give rise to cartilage condensations that prefigure all limb skeletal components1. Of the three cardinal limb axes, the mechanisms that lead to establishment and patterning of skeletal elements along the P–D axis are the least understood. Here we identify a genetic interaction between Gli3 (GLI-Kruppel family member 3) and Plzf (promyelocytic leukaemia zinc finger, also known as Zbtb16 and Zfp145), which is required specifically at very early stages of limb development for all proximal cartilage condensations in the hindlimb (femur, tibia, fibula). Notably, distal condensations comprising the foot are relatively unperturbed in Gli3-/-;Plzf-/- mouse embryos. We demonstrate that the cooperative activity of Gli3 and Plzf establishes the correct temporal and spatial distribution of chondrocyte progenitors in the proximal limb-bud independently of known P–D patterning markers and overall limb-bud size. Moreover, the limb defects in Gli3-/-;Plzf-/- embryos correlate with the transient death of a specific subset of proximal mesenchymal cells that express bone morphogenetic protein receptor, type 1B (Bmpr1b) at the onset of limb development. These findings suggest that the development of proximal and distal skeletal elements is distinctly regulated early during limb-bud formation. The initial division of the vertebrate limb into two distinct molecular domains is consistent with fossil evidence indicating that the upper and lower extremities of the limb have different evolutionary origins2.

Date: 2005
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/nature03801 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:436:y:2005:i:7048:d:10.1038_nature03801

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/nature03801

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:nature:v:436:y:2005:i:7048:d:10.1038_nature03801