EconPapers    
Economics at your fingertips  
 

Observation of a dewetting transition in the collapse of the melittin tetramer

Pu Liu, Xuhui Huang, Ruhong Zhou () and B. J. Berne ()
Additional contact information
Pu Liu: Columbia University
Xuhui Huang: Columbia University
Ruhong Zhou: Columbia University
B. J. Berne: Columbia University

Nature, 2005, vol. 437, issue 7055, 159-162

Abstract: Abstract Marked hydration changes occur during the self-assembly of the melittin protein tetramer in water. Hydrophobicity induces a drying transition in the gap between simple sufficiently large (more than 1 nm2) strongly hydrophobic surfaces as they approach each other1,2,3,4,5,6, resulting in the subsequent collapse of the system, as well as a depletion of water next to single surfaces7,8,9,10. Here we investigate whether the hydrophobic induced collapse of multidomain proteins or the formation of protein oligimers exhibits a similar drying transition. We performed computer simulations to study the collapse of the tetramer of melittin in water, and observed a marked water drying transition inside a nanoscale channel of the tetramer (with a channel size of up to two or three water-molecule diameters). This transition, although occurring on a microscopic length scale, is analogous to a first-order phase transition from liquid to vapour. We find that this drying is very sensitive to single mutations of the three isoleucines to less hydrophobic residues and that such mutations in the right locations can switch the channel from being dry to being wet. Thus, quite subtle changes in hydrophobic surface topology can profoundly influence the drying transition. We show that, even in the presence of the polar protein backbone, sufficiently hydrophobic protein surfaces can induce a liquid–vapour transition providing an enormous driving force towards further collapse. This behaviour was unexpected because of the absence of drying in the collapse of the multidomain protein 2,3-dihydroxybiphenyl dioxygenase (BphC).

Date: 2005
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/nature03926 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:437:y:2005:i:7055:d:10.1038_nature03926

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/nature03926

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:nature:v:437:y:2005:i:7055:d:10.1038_nature03926