Minimum speed limit for ocean ridge magmatism from 210Pb–226Ra–230Th disequilibria
K. H. Rubin (),
I. van der Zander,
M. C. Smith and
E. C. Bergmanis
Additional contact information
K. H. Rubin: University of Hawaii
I. van der Zander: University of Hawaii
M. C. Smith: University of Hawaii
E. C. Bergmanis: University of Hawaii
Nature, 2005, vol. 437, issue 7058, 534-538
Abstract:
Abstract Although 70 per cent of global crustal magmatism occurs at mid-ocean ridges1—where the heat budget controls crustal structure, hydrothermal activity and a vibrant biosphere—the tempo of magmatic inputs in these regions remains poorly understood. Such timescales can be assessed, however, with natural radioactive-decay-chain nuclides, because chemical disruption to secular equilibrium systems initiates parent–daughter disequilibria, which re-equilibrate by the shorter half-life in a pair. Here we use 210Pb–226Ra–230Th radioactive disequilibria and other geochemical attributes in oceanic basalts less than 20 years old to infer that melts of the Earth's mantle can be transported, accumulated and erupted in a few decades. This implies that magmatic conditions can fluctuate rapidly at ridge volcanoes. 210Pb deficits of up to 15 per cent relative to 226Ra occur in normal mid-ocean ridge basalts, with the largest deficits in the most magnesium-rich lavas. The 22-year half-life of 210Pb requires very recent fractionation of these two uranium-series nuclides. Relationships between 210Pb-deficits, (226Ra/230Th) activity ratios and compatible trace-element ratios preclude crustal-magma differentiation or daughter-isotope degassing as the main causes for the signal. A mantle-melting model2 can simulate observed disequilibria but preservation requires a subsequent mechanism to transport melt rapidly. The likelihood of magmatic disequilibria occurring before melt enters shallow crustal magma bodies also limits differentiation and heat replenishment timescales to decades at the localities studied.
Date: 2005
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.nature.com/articles/nature03993 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:437:y:2005:i:7058:d:10.1038_nature03993
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/nature03993
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().