EconPapers    
Economics at your fingertips  
 

Fast vesicle reloading and a large pool sustain high bandwidth transmission at a central synapse

Chiara Saviane and R. Angus Silver ()
Additional contact information
Chiara Saviane: University College London
R. Angus Silver: University College London

Nature, 2006, vol. 439, issue 7079, 983-987

Abstract: Abstract What limits the rate at which sensory information can be transmitted across synaptic connections in the brain? High-frequency signalling is restricted to brief bursts at many central excitatory synapses1,2, whereas graded ribbon-type synapses can sustain release3 and transmit information4 at high rates. Here we investigate transmission at the cerebellar mossy fibre terminal, which can fire at over 200 Hz for sustained periods in vivo5, yet makes few synaptic contacts onto individual granule cells6. We show that connections between mossy fibres and granule cells can sustain high-frequency signalling at physiological temperature. We use fluctuation analysis7 and pharmacological block of desensitization to identify the quantal determinants of short-term plasticity and combine these with a short-term plasticity model and cumulative excitatory postsynaptic current analysis to quantify the determinants of sustained high-frequency transmission. We show that release is maintained at each release site by rapid reloading of release-ready vesicles from an unusually large releasable pool of vesicles8 (∼300 per site). Our results establish that sustained vesicular release at high rates is not restricted to graded ribbon-type synapses and that mossy fibres are well suited for transmitting broad-bandwidth rate-coded information to the input layer of the cerebellar cortex.

Date: 2006
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.nature.com/articles/nature04509 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:439:y:2006:i:7079:d:10.1038_nature04509

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/nature04509

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:nature:v:439:y:2006:i:7079:d:10.1038_nature04509