Proteome survey reveals modularity of the yeast cell machinery
Anne-Claude Gavin,
Patrick Aloy,
Paola Grandi,
Roland Krause,
Markus Boesche,
Martina Marzioch,
Christina Rau,
Lars Juhl Jensen,
Sonja Bastuck,
Birgit Dümpelfeld,
Angela Edelmann,
Marie-Anne Heurtier,
Verena Hoffman,
Christian Hoefert,
Karin Klein,
Manuela Hudak,
Anne-Marie Michon,
Malgorzata Schelder,
Markus Schirle,
Marita Remor,
Tatjana Rudi,
Sean Hooper,
Andreas Bauer,
Tewis Bouwmeester,
Georg Casari,
Gerard Drewes,
Gitte Neubauer,
Jens M. Rick,
Bernhard Kuster,
Peer Bork,
Robert B. Russell () and
Giulio Superti-Furga ()
Additional contact information
Anne-Claude Gavin: Cellzome AG
Patrick Aloy: EMBL
Paola Grandi: Cellzome AG
Roland Krause: Cellzome AG
Markus Boesche: Cellzome AG
Martina Marzioch: Cellzome AG
Christina Rau: Cellzome AG
Lars Juhl Jensen: EMBL
Sonja Bastuck: Cellzome AG
Birgit Dümpelfeld: Cellzome AG
Angela Edelmann: Cellzome AG
Marie-Anne Heurtier: Cellzome AG
Verena Hoffman: Cellzome AG
Christian Hoefert: Cellzome AG
Karin Klein: Cellzome AG
Manuela Hudak: Cellzome AG
Anne-Marie Michon: Cellzome AG
Malgorzata Schelder: Cellzome AG
Markus Schirle: Cellzome AG
Marita Remor: Cellzome AG
Tatjana Rudi: Cellzome AG
Sean Hooper: EMBL
Andreas Bauer: Cellzome AG
Tewis Bouwmeester: Cellzome AG
Georg Casari: Cellzome AG
Gerard Drewes: Cellzome AG
Gitte Neubauer: Cellzome AG
Jens M. Rick: Cellzome AG
Bernhard Kuster: Cellzome AG
Peer Bork: EMBL
Robert B. Russell: EMBL
Giulio Superti-Furga: Cellzome AG
Nature, 2006, vol. 440, issue 7084, 631-636
Abstract:
Abstract Protein complexes are key molecular entities that integrate multiple gene products to perform cellular functions. Here we report the first genome-wide screen for complexes in an organism, budding yeast, using affinity purification and mass spectrometry. Through systematic tagging of open reading frames (ORFs), the majority of complexes were purified several times, suggesting screen saturation. The richness of the data set enabled a de novo characterization of the composition and organization of the cellular machinery. The ensemble of cellular proteins partitions into 491 complexes, of which 257 are novel, that differentially combine with additional attachment proteins or protein modules to enable a diversification of potential functions. Support for this modular organization of the proteome comes from integration with available data on expression, localization, function, evolutionary conservation, protein structure and binary interactions. This study provides the largest collection of physically determined eukaryotic cellular machines so far and a platform for biological data integration and modelling.
Date: 2006
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://www.nature.com/articles/nature04532 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:440:y:2006:i:7084:d:10.1038_nature04532
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/nature04532
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().