Toll-dependent selection of microbial antigens for presentation by dendritic cells
J. Magarian Blander and
Ruslan Medzhitov ()
Additional contact information
J. Magarian Blander: Yale University School of Medicine
Ruslan Medzhitov: Yale University School of Medicine
Nature, 2006, vol. 440, issue 7085, 808-812
Abstract:
Abstract Dendritic cells constitutively sample the tissue microenvironment and phagocytose both microbial and host apoptotic cells1,2,3,4. This leads to the induction of immunity against invading pathogens or tolerance to peripheral self antigens, respectively5,6,7,8,9. The outcome of antigen presentation by dendritic cells depends on their activation status, such that Toll-like receptor (TLR)-induced dendritic cell activation makes them immunogenic, whereas steady-state presentation of self antigens leads to tolerance5,6,8,10. TLR-inducible expression of co-stimulatory signals is one of the mechanisms of self/non-self discrimination5,11. However, it is unclear whether or how the inducible expression of co-stimulatory signals would distinguish between self antigens and microbial antigens when both are encountered by dendritic cells during infection6,8. Here we describe a new mechanism of antigen selection in dendritic cells for presentation by major histocompatibility complex class II molecules (MHC II) that is based on the origin of the antigen. We show that the efficiency of presenting antigens from phagocytosed cargo is dependent on the presence of TLR ligands within the cargo. Furthermore, we show that the generation of peptide–MHC class II complexes is controlled by TLRs in a strictly phagosome-autonomous manner.
Date: 2006
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/nature04596 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:440:y:2006:i:7085:d:10.1038_nature04596
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/nature04596
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().