Synaptic scaling mediated by glial TNF-α
David Stellwagen and
Robert C. Malenka ()
Additional contact information
David Stellwagen: Stanford University School of Medicine
Robert C. Malenka: Stanford University School of Medicine
Nature, 2006, vol. 440, issue 7087, 1054-1059
Abstract:
Abstract Two general forms of synaptic plasticity that operate on different timescales are thought to contribute to the activity-dependent refinement of neural circuitry during development: (1) long-term potentiation (LTP) and long-term depression (LTD), which involve rapid adjustments in the strengths of individual synapses in response to specific patterns of correlated synaptic activity, and (2) homeostatic synaptic scaling, which entails uniform adjustments in the strength of all synapses on a cell in response to prolonged changes in the cell's electrical activity1,2. Without homeostatic synaptic scaling, neural networks can become unstable and perform suboptimally1,2,3. Although much is known about the mechanisms underlying LTP and LTD4, little is known about the mechanisms responsible for synaptic scaling except that such scaling is due, at least in part, to alterations in receptor content at synapses5,6,7. Here we show that synaptic scaling in response to prolonged blockade of activity is mediated by the pro-inflammatory cytokine tumour-necrosis factor-α (TNF-α). Using mixtures of wild-type and TNF-α-deficient neurons and glia, we also show that glia are the source of the TNF-α that is required for this form of synaptic scaling. We suggest that by modulating TNF-α levels, glia actively participate in the homeostatic activity-dependent regulation of synaptic connectivity.
Date: 2006
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.nature.com/articles/nature04671 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:440:y:2006:i:7087:d:10.1038_nature04671
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/nature04671
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().