Resonant slow fault slip in subduction zones forced by climatic load stress
Anthony R. Lowry ()
Additional contact information
Anthony R. Lowry: University of Colorado
Nature, 2006, vol. 442, issue 7104, 802-805
Abstract:
Abstract Global Positioning System (GPS) measurements at subduction plate boundaries often record fault movements similar to earthquakes but much slower, occurring over timescales of ∼1 week to ∼1 year. These ‘slow slip events’ have been observed in Japan1,2, Cascadia3,4,5,6,7, Mexico8,9, Alaska10 and New Zealand11. The phenomenon is poorly understood, but several observations hint at the processes underlying slow slip. Although slip itself is silent, seismic instruments often record coincident low-amplitude tremor in a narrow (1–5 cycles per second) frequency range12. Also, modelling of GPS data3,7,9 and estimates of tremor location13 indicate that slip focuses near the transition from unstable (‘stick-slip’) to stable friction at the deep limit of the earthquake-producing seismogenic zone. Perhaps most intriguingly, slow slip is periodic at several locations, with recurrence varying from 6 to 18 months depending on which subduction zone (or even segment) is examined4,5,6,9. Here I show that such periodic slow fault slip may be a resonant response to climate-driven stress perturbations. Fault slip resonance helps to explain why slip events are periodic, why periods differ from place to place, and why slip focuses near the base of the seismogenic zone. Resonant slip should initiate within the rupture zone of future great earthquakes, suggesting that slow slip may illuminate fault properties that control earthquake slip.
Date: 2006
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.nature.com/articles/nature05055 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:442:y:2006:i:7104:d:10.1038_nature05055
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/nature05055
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().