Petrology and thermal structure of the Hawaiian plume from Mauna Kea volcano
Claude Herzberg ()
Additional contact information
Claude Herzberg: Department of Geological Sciences Rutgers University Piscataway
Nature, 2006, vol. 444, issue 7119, 605-609
Abstract:
Abstract There is uncertainty about whether the abundant tholeiitic lavas on Hawaii are the product of melt from peridotite or pyroxenite/eclogite rocks1,2. Using a parameterization of melting experiments on peridotite3 with glass analyses from the Hawaii Scientific Deep Project 2 on Mauna Kea volcano1, I show here that a small population of the core samples had fractionated from a peridotite-source primary magma. Most lavas, however, differentiated from magmas that were too deficient in CaO and enriched in NiO (ref. 2) to have formed from a peridotite source. For these, experiments indicate that they were produced by the melting of garnet pyroxenite, a lithology that had formed in a second stage by reaction of peridotite with partial melts of subducted oceanic crust2. Samples in the Hawaiian core are therefore consistent with previous suggestions that pyroxenite occurs in a host peridotite, and both contribute to melt production2,4. Primary magma compositions vary down the drill core, and these reveal evidence for temperature variations within the underlying mantle plume. Mauna Kea magmatism is represented in other Hawaiian volcanoes, and provides a key for a general understanding of melt production in lithologically heterogeneous mantle.
Date: 2006
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.nature.com/articles/nature05254 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:444:y:2006:i:7119:d:10.1038_nature05254
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/nature05254
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().