A bacterial dynamin-like protein
Harry H. Low and
Jan Löwe ()
Additional contact information
Harry H. Low: MRC Laboratory of Molecular Biology
Jan Löwe: MRC Laboratory of Molecular Biology
Nature, 2006, vol. 444, issue 7120, 766-769
Abstract:
Abstract Dynamins form a superfamily of large mechano-chemical GTPases that includes the classical dynamins and dynamin-like proteins (DLPs)1. They are found throughout the Eukarya, functioning in core cellular processes such as endocytosis and organelle division1. Many bacteria are predicted by sequence to possess large GTPases with the same multidomain architecture that is found in DLPs2. Mechanistic dissection of dynamin family members has been impeded by a lack of high-resolution structural data currently restricted to the GTPase3,4 and pleckstrin homology5 domains, and the dynamin-related human guanylate-binding protein6. Here we present the crystal structure of a cyanobacterial DLP in both nucleotide-free and GDP-associated conformation. The bacterial DLP shows dynamin-like qualities, such as helical self-assembly and tubulation of a lipid bilayer. In vivo, it localizes to the membrane in a manner reminiscent of FZL7, a chloroplast-specific dynamin-related protein with which it shares sequence similarity. Our results provide structural and mechanistic insight that may be relevant across the dynamin superfamily. Concurrently, we show compelling similarity between a cyanobacterial and chloroplast DLP that, given the endosymbiotic ancestry of chloroplasts8, questions the evolutionary origins of dynamins.
Date: 2006
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.nature.com/articles/nature05312 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:444:y:2006:i:7120:d:10.1038_nature05312
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/nature05312
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().