Femtosecond time-delay X-ray holography
Henry N. Chapman (),
Stefan P. Hau-Riege,
Michael J. Bogan,
Saša Bajt,
Anton Barty,
Sébastien Boutet,
Stefano Marchesini,
Matthias Frank,
Bruce W. Woods,
W. Henry Benner,
Richard A. London,
Urs Rohner,
Abraham Szöke,
Eberhard Spiller,
Thomas Möller,
Christoph Bostedt,
David A. Shapiro,
Marion Kuhlmann,
Rolf Treusch,
Elke Plönjes,
Florian Burmeister,
Magnus Bergh,
Carl Caleman,
Gösta Huldt,
M. Marvin Seibert and
Janos Hajdu
Additional contact information
Henry N. Chapman: University of California, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, USA
Stefan P. Hau-Riege: University of California, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, USA
Michael J. Bogan: University of California, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, USA
Saša Bajt: University of California, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, USA
Anton Barty: University of California, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, USA
Sébastien Boutet: University of California, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, USA
Stefano Marchesini: University of California, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, USA
Matthias Frank: University of California, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, USA
Bruce W. Woods: University of California, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, USA
W. Henry Benner: University of California, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, USA
Richard A. London: University of California, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, USA
Urs Rohner: University of California, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, USA
Abraham Szöke: University of California, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, USA
Eberhard Spiller: University of California, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, USA
Thomas Möller: Institut für Optik und Atomare Physik, Technische Universität Berlin, Hardenbergstraße 36, PN 3-1, 10623 Berlin, Germany
Christoph Bostedt: Institut für Optik und Atomare Physik, Technische Universität Berlin, Hardenbergstraße 36, PN 3-1, 10623 Berlin, Germany
David A. Shapiro: Center for Biophotonics Science and Technology, University of California, Davis, 2700 Stockton Boulevard, Suite 1400, Sacramento, California 95817, USA
Marion Kuhlmann: Deutsches Elektronen-Synchrotron, DESY, Notkestraße 85, D-22607 Hamburg, Germany
Rolf Treusch: Deutsches Elektronen-Synchrotron, DESY, Notkestraße 85, D-22607 Hamburg, Germany
Elke Plönjes: Deutsches Elektronen-Synchrotron, DESY, Notkestraße 85, D-22607 Hamburg, Germany
Florian Burmeister: Laboratory of Molecular Biophysics, Uppsala University, Husargatan 3, Box 596, SE-75124 Uppsala, Sweden
Magnus Bergh: Laboratory of Molecular Biophysics, Uppsala University, Husargatan 3, Box 596, SE-75124 Uppsala, Sweden
Carl Caleman: Laboratory of Molecular Biophysics, Uppsala University, Husargatan 3, Box 596, SE-75124 Uppsala, Sweden
Gösta Huldt: Laboratory of Molecular Biophysics, Uppsala University, Husargatan 3, Box 596, SE-75124 Uppsala, Sweden
M. Marvin Seibert: Laboratory of Molecular Biophysics, Uppsala University, Husargatan 3, Box 596, SE-75124 Uppsala, Sweden
Janos Hajdu: Stanford Synchrotron Radiation Laboratory, Stanford Linear Accelerator Center, 2575 Sand Hill Road, Menlo Park, California 94305, USA
Nature, 2007, vol. 448, issue 7154, 676-679
Abstract:
Dusting off an old technique Inspired by the 'dusty mirror' experiment that Isaac Newton used to demonstrate interference, Chapman et al. have devised a scheme to study microscopic particles with ultrafast and intense X-ray pulses. Newton's experiment involved visible light scattering from dust particles on the front of a back-quicksilvered mirror twice (once going into the mirror, once on its way out), and the corresponding circular interference patterns. In the modern version, X-ray pulses are focused on a thin membrane with polystyrene particles placed in front of an X-ray mirror. A pulse passes through the sample, triggering the explosion of a particle, and is then reflected back on to the sample by the mirror. The resulting diffraction pattern contains accurate time and spatially resolved information about the exploding particles. This type of X-ray 'flash' imaging may be used to explore the three-dimensional dynamics of materials at the timescale of atomic motion.
Date: 2007
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.nature.com/articles/nature06049 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:448:y:2007:i:7154:d:10.1038_nature06049
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/nature06049
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().