Progressive field-state collapse and quantum non-demolition photon counting
Christine Guerlin,
Julien Bernu,
Samuel Deléglise,
Clément Sayrin,
Sébastien Gleyzes,
Stefan Kuhr,
Michel Brune (),
Jean-Michel Raimond and
Serge Haroche ()
Additional contact information
Christine Guerlin: Laboratoire Kastler Brossel, Ecole Normale Supérieure, CNRS, Université Pierre et Marie Curie, 24 rue Lhomond, 75231 Paris Cedex 05, France
Julien Bernu: Laboratoire Kastler Brossel, Ecole Normale Supérieure, CNRS, Université Pierre et Marie Curie, 24 rue Lhomond, 75231 Paris Cedex 05, France
Samuel Deléglise: Laboratoire Kastler Brossel, Ecole Normale Supérieure, CNRS, Université Pierre et Marie Curie, 24 rue Lhomond, 75231 Paris Cedex 05, France
Clément Sayrin: Laboratoire Kastler Brossel, Ecole Normale Supérieure, CNRS, Université Pierre et Marie Curie, 24 rue Lhomond, 75231 Paris Cedex 05, France
Sébastien Gleyzes: Laboratoire Kastler Brossel, Ecole Normale Supérieure, CNRS, Université Pierre et Marie Curie, 24 rue Lhomond, 75231 Paris Cedex 05, France
Stefan Kuhr: Laboratoire Kastler Brossel, Ecole Normale Supérieure, CNRS, Université Pierre et Marie Curie, 24 rue Lhomond, 75231 Paris Cedex 05, France
Michel Brune: Laboratoire Kastler Brossel, Ecole Normale Supérieure, CNRS, Université Pierre et Marie Curie, 24 rue Lhomond, 75231 Paris Cedex 05, France
Jean-Michel Raimond: Laboratoire Kastler Brossel, Ecole Normale Supérieure, CNRS, Université Pierre et Marie Curie, 24 rue Lhomond, 75231 Paris Cedex 05, France
Serge Haroche: Laboratoire Kastler Brossel, Ecole Normale Supérieure, CNRS, Université Pierre et Marie Curie, 24 rue Lhomond, 75231 Paris Cedex 05, France
Nature, 2007, vol. 448, issue 7156, 889-893
Abstract:
Abstract The irreversible evolution of a microscopic system under measurement is a central feature of quantum theory. From an initial state generally exhibiting quantum uncertainty in the measured observable, the system is projected into a state in which this observable becomes precisely known. Its value is random, with a probability determined by the initial system’s state. The evolution induced by measurement (known as ‘state collapse’) can be progressive, accumulating the effects of elementary state changes. Here we report the observation of such a step-by-step collapse by non-destructively measuring the photon number of a field stored in a cavity. Atoms behaving as microscopic clocks cross the cavity successively. By measuring the light-induced alterations of the clock rate, information is progressively extracted, until the initially uncertain photon number converges to an integer. The suppression of the photon number spread is demonstrated by correlations between repeated measurements. The procedure illustrates all the postulates of quantum measurement (state collapse, statistical results and repeatability) and should facilitate studies of non-classical fields trapped in cavities.
Date: 2007
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.nature.com/articles/nature06057 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:448:y:2007:i:7156:d:10.1038_nature06057
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/nature06057
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().