EconPapers    
Economics at your fingertips  
 

Attosecond spectroscopy in condensed matter

A. L. Cavalieri (), N. Müller, Th. Uphues, V. S. Yakovlev, A. Baltuška, B. Horvath, B. Schmidt, L. Blümel, R. Holzwarth, S. Hendel, M. Drescher, U. Kleineberg, P. M. Echenique, R. Kienberger, F. Krausz () and U. Heinzmann ()
Additional contact information
A. L. Cavalieri: Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Str. 1, D-85748 Garching, Germany
N. Müller: Fakultät für Physik, Universität Bielefeld
Th. Uphues: Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Str. 1, D-85748 Garching, Germany
V. S. Yakovlev: Ludwig-Maximilians-Universität, Am Coulombwall 1, D-85748 Garching, Germany
A. Baltuška: Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Str. 1, D-85748 Garching, Germany
B. Horvath: Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Str. 1, D-85748 Garching, Germany
B. Schmidt: Menlo Systems GmbH, Am Klopferspitz 19, D-82152 Martinsried, Germany
L. Blümel: Menlo Systems GmbH, Am Klopferspitz 19, D-82152 Martinsried, Germany
R. Holzwarth: Menlo Systems GmbH, Am Klopferspitz 19, D-82152 Martinsried, Germany
S. Hendel: Fakultät für Physik, Universität Bielefeld
M. Drescher: Institut für Experimentalphysik, Universität Hamburg, Luruper Chaussee 149, D-22761 Hamburg, Germany
U. Kleineberg: Ludwig-Maximilians-Universität, Am Coulombwall 1, D-85748 Garching, Germany
P. M. Echenique: Dpto. Fisica de Materiales UPV/EHU, Centro Mixto CSIC-UPV/EHU and Donostia International Physics Center (DPIC), Paseo Manual de Lardizabal 4, 20018 San Sebastian, Spain
R. Kienberger: Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Str. 1, D-85748 Garching, Germany
F. Krausz: Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Str. 1, D-85748 Garching, Germany
U. Heinzmann: Fakultät für Physik, Universität Bielefeld

Nature, 2007, vol. 449, issue 7165, 1029-1032

Abstract: See how they run Electrons move in solids at very high speed — traversing atomic layers and interfaces within tens to hundreds of attoseconds (an attosecond is a billionth of a billionth of a second). These astonishingly brief travel times will ultimately limit the speed of the electronics of the future. Physicists have now experimentally probed such electron dynamics in real time. The cover illustrates the first attosecond spectroscopic measurement in a solid, revealing a 110-attosecond difference in the travel time of two different types of electrons following photoexcitation in a tungsten crystal. The ability to time electrons moving in solids over merely a few interatomic distances makes it possible to probe the solid-state electronic processes occurring at the ultimate speed limit and thus helps to advance technologies such as computation, data storage and photovoltaics, which all rely on exquisite control of electron transport in ever smaller structures of solid matter.

Date: 2007
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.nature.com/articles/nature06229 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:449:y:2007:i:7165:d:10.1038_nature06229

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/nature06229

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:nature:v:449:y:2007:i:7165:d:10.1038_nature06229