Hedgehog regulates smoothened activity by inducing a conformational switch
Yun Zhao,
Chao Tong and
Jin Jiang ()
Additional contact information
Yun Zhao: and
Chao Tong: and
Jin Jiang: and
Nature, 2007, vol. 450, issue 7167, 252-258
Abstract:
Abstract Hedgehog (HH) morphogen is essential for metazoan development. The seven-transmembrane protein smoothened (SMO) transduces the HH signal across the plasma membrane, but how SMO is activated remains poorly understood. In Drosophila melanogaster, HH induces phosphorylation at multiple Ser/Thr residues in the SMO carboxy-terminal cytoplasmic tail, leading to its cell surface accumulation and activation. Here we provide evidence that phosphorylation activates SMO by inducing a conformational switch. This occurs by antagonizing multiple Arg clusters in the SMO cytoplasmic tail. The Arg clusters inhibit SMO by blocking its cell surface expression and keeping it in an inactive conformation that is maintained by intramolecular electrostatic interactions. HH-induced phosphorylation disrupts the interaction, and induces a conformational switch and dimerization of SMO cytoplasmic tails, which is essential for pathway activation. Increasing the number of mutations in the Arg clusters progressively activates SMO. Hence, by employing multiple Arg clusters as inhibitory elements counteracted by differential phosphorylation, SMO acts as a rheostat to translate graded HH signals into distinct responses.
Date: 2007
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/nature06225 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:450:y:2007:i:7167:d:10.1038_nature06225
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/nature06225
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().