Crystal structure of opsin in its G-protein-interacting conformation
Patrick Scheerer,
Jung Hee Park,
Peter W. Hildebrand,
Yong Ju Kim,
Norbert Krauß,
Hui-Woog Choe (),
Klaus Peter Hofmann () and
Oliver P. Ernst ()
Additional contact information
Patrick Scheerer: Institut für Medizinische Physik und Biophysik (CC2), Charité – Universitätsmedizin Berlin, Charitéplatz 1, D-10117 Berlin, Germany
Jung Hee Park: Institut für Medizinische Physik und Biophysik (CC2), Charité – Universitätsmedizin Berlin, Charitéplatz 1, D-10117 Berlin, Germany
Peter W. Hildebrand: Institut für Medizinische Physik und Biophysik (CC2), Charité – Universitätsmedizin Berlin, Charitéplatz 1, D-10117 Berlin, Germany
Yong Ju Kim: Institut für Medizinische Physik und Biophysik (CC2), Charité – Universitätsmedizin Berlin, Charitéplatz 1, D-10117 Berlin, Germany
Norbert Krauß: Queen Mary, University of London, School of Biological and Chemical Sciences
Hui-Woog Choe: Institut für Medizinische Physik und Biophysik (CC2), Charité – Universitätsmedizin Berlin, Charitéplatz 1, D-10117 Berlin, Germany
Klaus Peter Hofmann: Institut für Medizinische Physik und Biophysik (CC2), Charité – Universitätsmedizin Berlin, Charitéplatz 1, D-10117 Berlin, Germany
Oliver P. Ernst: Institut für Medizinische Physik und Biophysik (CC2), Charité – Universitätsmedizin Berlin, Charitéplatz 1, D-10117 Berlin, Germany
Nature, 2008, vol. 455, issue 7212, 497-502
Abstract:
Abstract Opsin, the ligand-free form of the G-protein-coupled receptor rhodopsin, at low pH adopts a conformationally distinct, active G-protein-binding state known as Ops*. A synthetic peptide derived from the main binding site of the heterotrimeric G protein—the carboxy terminus of the α-subunit (GαCT)—stabilizes Ops*. Here we present the 3.2 Å crystal structure of the bovine Ops*–GαCT peptide complex. GαCT binds to a site in opsin that is opened by an outward tilt of transmembrane helix (TM) 6, a pairing of TM5 and TM6, and a restructured TM7–helix 8 kink. Contacts along the inner surface of TM5 and TM6 induce an α-helical conformation in GαCT with a C-terminal reverse turn. Main-chain carbonyl groups in the reverse turn constitute the centre of a hydrogen-bonded network, which links the two receptor regions containing the conserved E(D)RY and NPxxY(x)5,6F motifs. On the basis of the Ops*–GαCT structure and known conformational changes in Gα, we discuss signal transfer from the receptor to the G protein nucleotide-binding site.
Date: 2008
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.nature.com/articles/nature07330 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:455:y:2008:i:7212:d:10.1038_nature07330
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/nature07330
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().