EconPapers    
Economics at your fingertips  
 

Tracking G-protein-coupled receptor activation using genetically encoded infrared probes

Shixin Ye, Ekaterina Zaitseva, Gianluigi Caltabiano, Gebhard F. X. Schertler, Thomas P. Sakmar (), Xavier Deupi () and Reiner Vogel ()
Additional contact information
Shixin Ye: Laboratory of Molecular Biology and Biochemistry, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA
Ekaterina Zaitseva: Biophysics Section, Institute of Molecular Medicine and Cell Research, University of Freiburg, Hermann Herder Str. 9, D-79104 Freiburg, Germany
Gianluigi Caltabiano: Laboratori de Medicina Computacional, Unitat de Bioestadística, Universitat Autònoma de Barcelona, 08193 Bellaterra, Catalunya, Spain
Gebhard F. X. Schertler: MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK
Thomas P. Sakmar: Laboratory of Molecular Biology and Biochemistry, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA
Xavier Deupi: Laboratori de Medicina Computacional, Unitat de Bioestadística, Universitat Autònoma de Barcelona, 08193 Bellaterra, Catalunya, Spain
Reiner Vogel: Biophysics Section, Institute of Molecular Medicine and Cell Research, University of Freiburg, Hermann Herder Str. 9, D-79104 Freiburg, Germany

Nature, 2010, vol. 464, issue 7293, 1386-1389

Abstract: Rhodopsin activation tracked The G-protein-coupled receptor (GPCR) rhodopsin is responsible for dim-light vision. Incoming light isomerizes the protein's retinal chromophore and triggers concerted movements of several transmembrane helices. Here, site-directed non-natural amino acid mutagenesis is used to engineer mutant rhodopsins containing a p-azido-L-phenylalanine residue at selected sites. The azido probe's vibrational signatures can then be monitored using infrared spectroscopy, revealing changes in the electrostatic environment as rhodopsin proceeds along its activation pathway. The technique reveals early conformational changes in the protein that precede the well known larger movements of the transmembrane helices.

Date: 2010
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.nature.com/articles/nature08948 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:464:y:2010:i:7293:d:10.1038_nature08948

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/nature08948

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:nature:v:464:y:2010:i:7293:d:10.1038_nature08948