EconPapers    
Economics at your fingertips  
 

Lithospheric layering in the North American craton

Huaiyu Yuan and Barbara Romanowicz ()
Additional contact information
Huaiyu Yuan: Berkeley Seismological Laboratory, 209 McCone Hall, Berkeley, California 94720, USA
Barbara Romanowicz: Berkeley Seismological Laboratory, 209 McCone Hall, Berkeley, California 94720, USA

Nature, 2010, vol. 466, issue 7310, 1063-1068

Abstract: Abstract How cratons—extremely stable continental areas of the Earth’s crust—formed and remained largely unchanged for more than 2,500 million years is much debated. Recent studies of seismic-wave receiver function data have detected a structural boundary under continental cratons at depths too shallow to be consistent with the lithosphere–asthenosphere boundary, as inferred from seismic tomography and other geophysical studies. Here we show that changes in the direction of azimuthal anisotropy with depth reveal the presence of two distinct lithospheric layers throughout the stable part of the North American continent. The top layer is thick (∼150 km) under the Archaean core and tapers out on the surrounding Palaeozoic borders. Its thickness variations follow those of a highly depleted layer inferred from thermo-barometric analysis of xenoliths. The lithosphere–asthenosphere boundary is relatively flat (ranging from 180 to 240 km in depth), in agreement with the presence of a thermal conductive root that subsequently formed around the depleted chemical layer. Our findings tie together seismological, geochemical and geodynamical studies of the cratonic lithosphere in North America. They also suggest that the horizon detected in receiver function studies probably corresponds to the sharp mid-lithospheric boundary rather than to the more gradual lithosphere–asthenosphere boundary.

Date: 2010
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.nature.com/articles/nature09332 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:466:y:2010:i:7310:d:10.1038_nature09332

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/nature09332

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:nature:v:466:y:2010:i:7310:d:10.1038_nature09332