Hydrogen is an energy source for hydrothermal vent symbioses
Jillian M. Petersen,
Frank U. Zielinski,
Thomas Pape,
Richard Seifert,
Cristina Moraru,
Rudolf Amann,
Stephane Hourdez,
Peter R. Girguis,
Scott D. Wankel,
Valerie Barbe,
Eric Pelletier,
Dennis Fink,
Christian Borowski,
Wolfgang Bach and
Nicole Dubilier ()
Additional contact information
Jillian M. Petersen: Max Planck Institute for Marine Microbiology, Celsiusstrasse 1
Frank U. Zielinski: Max Planck Institute for Marine Microbiology, Celsiusstrasse 1
Thomas Pape: University of Bremen, Klagenfurter Strasse
Richard Seifert: University of Hamburg, Institute for Biogeochemistry and Marine Chemistry, Bundesstrasse 55
Cristina Moraru: Max Planck Institute for Marine Microbiology, Celsiusstrasse 1
Rudolf Amann: Max Planck Institute for Marine Microbiology, Celsiusstrasse 1
Stephane Hourdez: Equipe Genetique des Adaptations aux Milieux Extremes, CNRS-UPMC UMR 7144, Station Biologique, BP74
Peter R. Girguis: Harvard University
Scott D. Wankel: Harvard University
Valerie Barbe: Commissariat à l’Energie Atomique/Genoscope, 91000 Évry, France, Centre National de la Recherche Scientifique, UMR8030, 91000 Évry, France, and Université d’Evry Val d’Essone 91000 Évry
Eric Pelletier: Commissariat à l’Energie Atomique/Genoscope, 91000 Évry, France, Centre National de la Recherche Scientifique, UMR8030, 91000 Évry, France, and Université d’Evry Val d’Essone 91000 Évry
Dennis Fink: Max Planck Institute for Marine Microbiology, Celsiusstrasse 1
Christian Borowski: Max Planck Institute for Marine Microbiology, Celsiusstrasse 1
Wolfgang Bach: University of Bremen, PO Box 33 04 40
Nicole Dubilier: Max Planck Institute for Marine Microbiology, Celsiusstrasse 1
Nature, 2011, vol. 476, issue 7359, 176-180
Abstract:
Abstract The discovery of deep-sea hydrothermal vents in 1977 revolutionized our understanding of the energy sources that fuel primary productivity on Earth. Hydrothermal vent ecosystems are dominated by animals that live in symbiosis with chemosynthetic bacteria. So far, only two energy sources have been shown to power chemosynthetic symbioses: reduced sulphur compounds and methane. Using metagenome sequencing, single-gene fluorescence in situ hybridization, immunohistochemistry, shipboard incubations and in situ mass spectrometry, we show here that the symbionts of the hydrothermal vent mussel Bathymodiolus from the Mid-Atlantic Ridge use hydrogen to power primary production. In addition, we show that the symbionts of Bathymodiolus mussels from Pacific vents have hupL, the key gene for hydrogen oxidation. Furthermore, the symbionts of other vent animals such as the tubeworm Riftia pachyptila and the shrimp Rimicaris exoculata also have hupL. We propose that the ability to use hydrogen as an energy source is widespread in hydrothermal vent symbioses, particularly at sites where hydrogen is abundant.
Date: 2011
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.nature.com/articles/nature10325 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:476:y:2011:i:7359:d:10.1038_nature10325
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/nature10325
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().