EconPapers    
Economics at your fingertips  
 

Crystal structure of the 14-subunit RNA polymerase I

Carlos Fernández-Tornero (), María Moreno-Morcillo, Umar J. Rashid, Nicholas M. I. Taylor, Federico M. Ruiz, Tim Gruene, Pierre Legrand, Ulrich Steuerwald and Christoph W. Müller ()
Additional contact information
Carlos Fernández-Tornero: Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040 Madrid, Spain
María Moreno-Morcillo: European Molecular Biology Laboratory, Structural and Computational Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany
Umar J. Rashid: European Molecular Biology Laboratory, Structural and Computational Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany
Nicholas M. I. Taylor: Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040 Madrid, Spain
Federico M. Ruiz: Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040 Madrid, Spain
Tim Gruene: Georg-August-University, Tammannstraße 4, 37077 Göttingen, Germany
Pierre Legrand: SOLEIL Synchrotron, L’Orme des Merisiers Saint Aubin, 91192 Gif-sur-Yvette, France
Ulrich Steuerwald: European Molecular Biology Laboratory, Structural and Computational Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany
Christoph W. Müller: European Molecular Biology Laboratory, Structural and Computational Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany

Nature, 2013, vol. 502, issue 7473, 644-649

Abstract: Abstract Protein biosynthesis depends on the availability of ribosomes, which in turn relies on ribosomal RNA production. In eukaryotes, this process is carried out by RNA polymerase I (Pol I), a 14-subunit enzyme, the activity of which is a major determinant of cell growth. Here we present the crystal structure of Pol I from Saccharomyces cerevisiae at 3.0 Å resolution. The Pol I structure shows a compact core with a wide DNA-binding cleft and a tightly anchored stalk. An extended loop mimics the DNA backbone in the cleft and may be involved in regulating Pol I transcription. Subunit A12.2 extends from the A190 jaw to the active site and inserts a transcription elongation factor TFIIS-like zinc ribbon into the nucleotide triphosphate entry pore, providing insight into the role of A12.2 in RNA cleavage and Pol I insensitivity to α-amanitin. The A49–A34.5 heterodimer embraces subunit A135 through extended arms, thereby contacting and potentially regulating subunit A12.2.

Date: 2013
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.nature.com/articles/nature12636 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:502:y:2013:i:7473:d:10.1038_nature12636

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/nature12636

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:nature:v:502:y:2013:i:7473:d:10.1038_nature12636