EconPapers    
Economics at your fingertips  
 

Orbital-specific mapping of the ligand exchange dynamics of Fe(CO)5 in solution

Ph. Wernet (), K. Kunnus, I. Josefsson, I. Rajkovic, W. Quevedo, M. Beye, S. Schreck, S. Grübel, M. Scholz, D. Nordlund, W. Zhang, R. W. Hartsock, W. F. Schlotter, J. J. Turner, B. Kennedy, F. Hennies, F. M. F. de Groot, K. J. Gaffney, S. Techert, M. Odelius () and A. Föhlisch ()
Additional contact information
Ph. Wernet: Institute for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH
K. Kunnus: Institute for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH
I. Josefsson: Stockholm University, AlbaNova University Center
I. Rajkovic: IFG Structural Dynamics of (bio)chemical Systems, Max Planck Institute for Biophysical Chemistry
W. Quevedo: IFG Structural Dynamics of (bio)chemical Systems, Max Planck Institute for Biophysical Chemistry
M. Beye: Institute for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH
S. Schreck: Institute for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH
S. Grübel: IFG Structural Dynamics of (bio)chemical Systems, Max Planck Institute for Biophysical Chemistry
M. Scholz: IFG Structural Dynamics of (bio)chemical Systems, Max Planck Institute for Biophysical Chemistry
D. Nordlund: Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory
W. Zhang: PULSE Institute, SLAC National Accelerator Laboratory, Stanford University
R. W. Hartsock: PULSE Institute, SLAC National Accelerator Laboratory, Stanford University
W. F. Schlotter: Linac Coherent Light Source, SLAC National Accelerator Laboratory
J. J. Turner: Linac Coherent Light Source, SLAC National Accelerator Laboratory
B. Kennedy: MAX-lab
F. Hennies: MAX-lab
F. M. F. de Groot: Utrecht University, Universiteitsweg 99
K. J. Gaffney: PULSE Institute, SLAC National Accelerator Laboratory, Stanford University
S. Techert: IFG Structural Dynamics of (bio)chemical Systems, Max Planck Institute for Biophysical Chemistry
M. Odelius: Stockholm University, AlbaNova University Center
A. Föhlisch: Institute for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Nature, 2015, vol. 520, issue 7545, 78-81

Abstract: Abstract Transition-metal complexes have long attracted interest for fundamental chemical reactivity studies and possible use in solar energy conversion1,2. Electronic excitation, ligand loss from the metal centre, or a combination of both, creates changes in charge and spin density at the metal site3,4,5,6,7,8,9,10,11 that need to be controlled to optimize complexes for photocatalytic hydrogen production8 and selective carbon–hydrogen bond activation9,10,11. An understanding at the molecular level of how transition-metal complexes catalyse reactions, and in particular of the role of the short-lived and reactive intermediate states involved, will be critical for such optimization. However, suitable methods for detailed characterization of electronic excited states have been lacking. Here we show, with the use of X-ray laser-based femtosecond-resolution spectroscopy and advanced quantum chemical theory to probe the reaction dynamics of the benchmark transition-metal complex Fe(CO)5 in solution, that the photo-induced removal of CO generates the 16-electron Fe(CO)4 species, a homogeneous catalyst12,13 with an electron deficiency at the Fe centre14,15, in a hitherto unreported excited singlet state that either converts to the triplet ground state or combines with a CO or solvent molecule to regenerate a penta-coordinated Fe species on a sub-picosecond timescale. This finding, which resolves the debate about the relative importance of different spin channels in the photochemistry of Fe(CO)5 (refs 4, 16,17,18,19 and 20), was made possible by the ability of femtosecond X-ray spectroscopy to probe frontier-orbital interactions with atom specificity. We expect the method to be broadly applicable in the chemical sciences, and to complement approaches that probe structural dynamics in ultrafast processes.

Date: 2015
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.nature.com/articles/nature14296 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:520:y:2015:i:7545:d:10.1038_nature14296

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/nature14296

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:nature:v:520:y:2015:i:7545:d:10.1038_nature14296