Structural insight into the role of the Ton complex in energy transduction
Hervé Celia,
Nicholas Noinaj (),
Stanislav D. Zakharov,
Enrica Bordignon,
Istvan Botos,
Monica Santamaria,
Travis J. Barnard,
William A. Cramer,
Roland Lloubes () and
Susan K. Buchanan ()
Additional contact information
Hervé Celia: Laboratoire d’Ingénierie des Systèmes Macromoléculaires, UMR7255 CNRS/Aix-Marseille Université, Institut de Microbiologie de la Méditerranée
Nicholas Noinaj: Markey Center for Structural Biology, and the Purdue Institute for Inflammation, Immunology and Infectious Diseases, Purdue University
Stanislav D. Zakharov: Markey Center for Structural Biology, and the Purdue Institute for Inflammation, Immunology and Infectious Diseases, Purdue University
Enrica Bordignon: Fachbereich Physik, Freie Universität
Istvan Botos: National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health
Monica Santamaria: Instituto de Investigacion Hospital La Paz (IdiPAZ), Paseo de la Castellana 261
Travis J. Barnard: National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health
William A. Cramer: Markey Center for Structural Biology, and the Purdue Institute for Inflammation, Immunology and Infectious Diseases, Purdue University
Roland Lloubes: Laboratoire d’Ingénierie des Systèmes Macromoléculaires, UMR7255 CNRS/Aix-Marseille Université, Institut de Microbiologie de la Méditerranée
Susan K. Buchanan: National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health
Nature, 2016, vol. 538, issue 7623, 60-65
Abstract:
Abstract In Gram-negative bacteria, outer membrane transporters import nutrients by coupling to an inner membrane protein complex called the Ton complex. The Ton complex consists of TonB, ExbB, and ExbD, and uses the proton motive force at the inner membrane to transduce energy to the outer membrane via TonB. Here, we structurally characterize the Ton complex from Escherichia coli using X-ray crystallography, electron microscopy, double electron–electron resonance (DEER) spectroscopy, and crosslinking. Our results reveal a stoichiometry consisting of a pentamer of ExbB, a dimer of ExbD, and at least one TonB. Electrophysiology studies show that the Ton subcomplex forms pH-sensitive cation-selective channels and provide insight into the mechanism by which it may harness the proton motive force to produce energy.
Date: 2016
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.nature.com/articles/nature19757 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:538:y:2016:i:7623:d:10.1038_nature19757
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/nature19757
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().