EconPapers    
Economics at your fingertips  
 

Structure and regulation of the human INO80–nucleosome complex

Rafael Ayala, Oliver Willhoft, Ricardo J. Aramayo, Martin Wilkinson, Elizabeth A. McCormack, Lorraine Ocloo, Dale B. Wigley () and Xiaodong Zhang ()
Additional contact information
Rafael Ayala: Imperial College London
Oliver Willhoft: Imperial College London
Ricardo J. Aramayo: Imperial College London
Martin Wilkinson: Imperial College London
Elizabeth A. McCormack: Imperial College London
Lorraine Ocloo: Imperial College London
Dale B. Wigley: Imperial College London
Xiaodong Zhang: Imperial College London

Nature, 2018, vol. 556, issue 7701, 391-395

Abstract: Abstract Access to DNA within nucleosomes is required for a variety of processes in cells including transcription, replication and repair. Consequently, cells encode multiple systems that remodel nucleosomes. These complexes can be simple, involving one or a few protein subunits, or more complicated multi-subunit machines1. Biochemical studies2–4 have placed the motor domains of several chromatin remodellers in the superhelical location 2 region of the nucleosome. Structural studies of yeast Chd1 and Snf2—a subunit in the complex with the capacity to remodel the structure of chromatin (RSC)—in complex with nucleosomes5–7 have provided insights into the basic mechanism of nucleosome sliding performed by these complexes. However, how larger, multi-subunit remodelling complexes such as INO80 interact with nucleosomes and how remodellers carry out functions such as nucleosome sliding8, histone exchange9 and nucleosome spacing10–12 remain poorly understood. Although some remodellers work as monomers13, others work as highly cooperative dimers11, 14, 15. Here we present the structure of the human INO80 chromatin remodeller with a bound nucleosome, which reveals that INO80 interacts with nucleosomes in a previously undescribed manner: the motor domains are located on the DNA at the entry point to the nucleosome, rather than at superhelical location 2. The ARP5–IES6 module of INO80 makes additional contacts on the opposite side of the nucleosome. This arrangement enables the histone H3 tails of the nucleosome to have a role in the regulation of the activities of the INO80 motor domain—unlike in other characterized remodellers, for which H4 tails have been shown to regulate the motor domains.

Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.nature.com/articles/s41586-018-0021-6 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:556:y:2018:i:7701:d:10.1038_s41586-018-0021-6

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/s41586-018-0021-6

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:nature:v:556:y:2018:i:7701:d:10.1038_s41586-018-0021-6