Characterization of the 1S–2S transition in antihydrogen
M. Ahmadi,
B. X. R. Alves,
C. J. Baker,
W. Bertsche,
A. Capra,
C. Carruth,
C. L. Cesar,
M. Charlton,
S. Cohen,
R. Collister,
S. Eriksson,
A. Evans,
N. Evetts,
J. Fajans,
T. Friesen,
M. C. Fujiwara,
D. R. Gill,
J. S. Hangst (),
W. N. Hardy,
M. E. Hayden,
C. A. Isaac,
M. A. Johnson,
J. M. Jones,
S. A. Jones,
S. Jonsell,
A. Khramov,
P. Knapp,
L. Kurchaninov,
N. Madsen,
D. Maxwell,
J. T. K. McKenna,
S. Menary,
T. Momose,
J. J. Munich,
K. Olchanski,
A. Olin,
P. Pusa,
C. Ø. Rasmussen,
F. Robicheaux,
R. L. Sacramento,
M. Sameed,
E. Sarid,
D. M. Silveira,
G. Stutter,
C. So,
T. D. Tharp,
R. I. Thompson,
D. P. Werf and
J. S. Wurtele
Additional contact information
M. Ahmadi: University of Liverpool
B. X. R. Alves: Aarhus University
C. J. Baker: Swansea University
W. Bertsche: University of Manchester
A. Capra: TRIUMF
C. Carruth: University of California at Berkeley
C. L. Cesar: Universidade Federal do Rio de Janeiro
M. Charlton: Swansea University
S. Cohen: Ben-Gurion University of the Negev
R. Collister: TRIUMF
S. Eriksson: Swansea University
A. Evans: University of Calgary
N. Evetts: University of British Columbia
J. Fajans: University of California at Berkeley
T. Friesen: Aarhus University
M. C. Fujiwara: TRIUMF
D. R. Gill: TRIUMF
J. S. Hangst: Aarhus University
W. N. Hardy: University of British Columbia
M. E. Hayden: Simon Fraser University
C. A. Isaac: Swansea University
M. A. Johnson: University of Manchester
J. M. Jones: Swansea University
S. A. Jones: Aarhus University
S. Jonsell: Stockholm University
A. Khramov: TRIUMF
P. Knapp: Swansea University
L. Kurchaninov: TRIUMF
N. Madsen: Swansea University
D. Maxwell: Swansea University
J. T. K. McKenna: TRIUMF
S. Menary: York University
T. Momose: University of British Columbia
J. J. Munich: Simon Fraser University
K. Olchanski: TRIUMF
A. Olin: TRIUMF
P. Pusa: University of Liverpool
C. Ø. Rasmussen: Aarhus University
F. Robicheaux: Purdue University
R. L. Sacramento: Universidade Federal do Rio de Janeiro
M. Sameed: Swansea University
E. Sarid: Soreq NRC
D. M. Silveira: Universidade Federal do Rio de Janeiro
G. Stutter: Aarhus University
C. So: University of Calgary
T. D. Tharp: Marquette University
R. I. Thompson: University of Calgary
D. P. Werf: Swansea University
J. S. Wurtele: University of California at Berkeley
Nature, 2018, vol. 557, issue 7703, 71-75
Abstract:
Abstract In 1928, Dirac published an equation1 that combined quantum mechanics and special relativity. Negative-energy solutions to this equation, rather than being unphysical as initially thought, represented a class of hitherto unobserved and unimagined particles—antimatter. The existence of particles of antimatter was confirmed with the discovery of the positron2 (or anti-electron) by Anderson in 1932, but it is still unknown why matter, rather than antimatter, survived after the Big Bang. As a result, experimental studies of antimatter3–7, including tests of fundamental symmetries such as charge–parity and charge–parity–time, and searches for evidence of primordial antimatter, such as antihelium nuclei, have high priority in contemporary physics research. The fundamental role of the hydrogen atom in the evolution of the Universe and in the historical development of our understanding of quantum physics makes its antimatter counterpart—the antihydrogen atom—of particular interest. Current standard-model physics requires that hydrogen and antihydrogen have the same energy levels and spectral lines. The laser-driven 1S–2S transition was recently observed8 in antihydrogen. Here we characterize one of the hyperfine components of this transition using magnetically trapped atoms of antihydrogen and compare it to model calculations for hydrogen in our apparatus. We find that the shape of the spectral line agrees very well with that expected for hydrogen and that the resonance frequency agrees with that in hydrogen to about 5 kilohertz out of 2.5 × 1015 hertz. This is consistent with charge–parity–time invariance at a relative precision of 2 × 10−12—two orders of magnitude more precise than the previous determination8—corresponding to an absolute energy sensitivity of 2 × 10−20 GeV.
Date: 2018
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41586-018-0017-2 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:557:y:2018:i:7703:d:10.1038_s41586-018-0017-2
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/s41586-018-0017-2
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().