EconPapers    
Economics at your fingertips  
 

Dissecting spinal cord regeneration

Michael V. Sofroniew ()
Additional contact information
Michael V. Sofroniew: David Geffen School of Medicine, University of California, Los Angeles

Nature, 2018, vol. 557, issue 7705, 343-350

Abstract: Abstract The inability to recover functions lost after severe spinal cord injury has been recognized for millennia and was first attributed to a failure of spinal cord neural regeneration over 100 years ago. The last forty years have seen intense research into achieving such regeneration, but in spite of conceptual advances and many reports announcing successful interventions, progress has been slow and often controversial. Here, I examine consequential advances and setbacks, and critically consider assumptions underlying certain approaches. I argue that expanding mechanistic knowledge about multiple forms of neural regeneration, why they fail and how they can restore function will resolve conceptual contentions and push the field forward.

Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
https://www.nature.com/articles/s41586-018-0068-4 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:557:y:2018:i:7705:d:10.1038_s41586-018-0068-4

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/s41586-018-0068-4

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:nature:v:557:y:2018:i:7705:d:10.1038_s41586-018-0068-4