EconPapers    
Economics at your fingertips  
 

Insights into catalysis and function of phosphoribosyl-linked serine ubiquitination

Sissy Kalayil, Sagar Bhogaraju, Florian Bonn, Donghyuk Shin, Yaobin Liu, Ninghai Gan, Jérôme Basquin, Paolo Grumati, Zhao-Qing Luo and Ivan Dikic ()
Additional contact information
Sissy Kalayil: Goethe University Frankfurt - Medical Faculty, University Hospital
Sagar Bhogaraju: Goethe University Frankfurt - Medical Faculty, University Hospital
Florian Bonn: Goethe University Frankfurt - Medical Faculty, University Hospital
Donghyuk Shin: Goethe University Frankfurt - Medical Faculty, University Hospital
Yaobin Liu: Goethe University Frankfurt - Medical Faculty, University Hospital
Ninghai Gan: Purdue University
Jérôme Basquin: Department of Structural Cell Biology
Paolo Grumati: Goethe University Frankfurt - Medical Faculty, University Hospital
Zhao-Qing Luo: Purdue University
Ivan Dikic: Goethe University Frankfurt - Medical Faculty, University Hospital

Nature, 2018, vol. 557, issue 7707, 734-738

Abstract: Abstract Conventional ubiquitination regulates key cellular processes by catalysing the ATP-dependent formation of an isopeptide bond between ubiquitin (Ub) and primary amines in substrate proteins 1 . Recently, the SidE family of bacterial effector proteins (SdeA, SdeB, SdeC and SidE) from pathogenic Legionella pneumophila were shown to use NAD+ to mediate phosphoribosyl-linked ubiquitination of serine residues in host proteins2, 3. However, the molecular architecture of the catalytic platform that enables this complex multistep process remains unknown. Here we describe the structure of the catalytic core of SdeA, comprising mono-ADP-ribosyltransferase (mART) and phosphodiesterase (PDE) domains, and shed light on the activity of two distinct catalytic sites for serine ubiquitination. The mART catalytic site is composed of an α-helical lobe (AHL) that, together with the mART core, creates a chamber for NAD+ binding and ADP-ribosylation of ubiquitin. The catalytic site in the PDE domain cleaves ADP-ribosylated ubiquitin to phosphoribosyl ubiquitin (PR-Ub) and mediates a two-step PR-Ub transfer reaction: first to a catalytic histidine 277 (forming a transient SdeA H277–PR-Ub intermediate) and subsequently to a serine residue in host proteins. Structural analysis revealed a substrate binding cleft in the PDE domain, juxtaposed with the catalytic site, that is essential for positioning serines for ubiquitination. Using degenerate substrate peptides and newly identified ubiquitination sites in RTN4B, we show that disordered polypeptides with hydrophobic residues surrounding the target serine residues are preferred substrates for SdeA ubiquitination. Infection studies with L. pneumophila expressing substrate-binding mutants of SdeA revealed that substrate ubiquitination, rather than modification of the cellular ubiquitin pool, determines the pathophysiological effect of SdeA during acute bacterial infection.

Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
https://www.nature.com/articles/s41586-018-0145-8 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:557:y:2018:i:7707:d:10.1038_s41586-018-0145-8

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/s41586-018-0145-8

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:nature:v:557:y:2018:i:7707:d:10.1038_s41586-018-0145-8