Observation of anisotropic magneto-Peltier effect in nickel
Ken-ichi Uchida (),
Shunsuke Daimon,
Ryo Iguchi and
Eiji Saitoh
Additional contact information
Ken-ichi Uchida: National Institute for Materials Science
Shunsuke Daimon: Institute for Materials Research, Tohoku University
Ryo Iguchi: National Institute for Materials Science
Eiji Saitoh: Center for Spintronics Research Network, Tohoku University
Nature, 2018, vol. 558, issue 7708, 95-99
Abstract:
Abstract The Peltier effect, discovered in 1834, converts a charge current into a heat current in a conductor, and its performance is described by the Peltier coefficient, which is defined as the ratio of the generated heat current to the applied charge current1,2. To exploit the Peltier effect for thermoelectric cooling or heating, junctions of two conductors with different Peltier coefficients have been believed to be indispensable. Here we challenge this conventional wisdom by demonstrating Peltier cooling and heating in a single material without junctions. This is realized through an anisotropic magneto-Peltier effect in which the Peltier coefficient depends on the angle between the directions of a charge current and magnetization in a ferromagnet. By using active thermography techniques3–10, we observe the temperature change induced by this effect in a plain nickel slab. We find that the thermoelectric properties of the ferromagnet can be redesigned simply by changing the configurations of the charge current and magnetization, for instance, by shaping the ferromagnet so that the current must flow around a curve. Our experimental results demonstrate the suitability of nickel for the anisotropic magneto-Peltier effect and the importance of spin–orbit interaction in its mechanism. The anisotropic magneto-Peltier effect observed here is the missing thermoelectric phenomenon in ferromagnetic materials—the Onsager reciprocal of the anisotropic magneto-Seebeck effect previously observed in ferromagnets—and its simplicity might prove useful in developing thermal management technologies for electronic and spintronic devices.
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://www.nature.com/articles/s41586-018-0143-x Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:558:y:2018:i:7708:d:10.1038_s41586-018-0143-x
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/s41586-018-0143-x
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().