EconPapers    
Economics at your fingertips  
 

Visualizing late states of human 40S ribosomal subunit maturation

Michael Ameismeier, Jingdong Cheng, Otto Berninghausen and Roland Beckmann ()
Additional contact information
Michael Ameismeier: University of Munich
Jingdong Cheng: University of Munich
Otto Berninghausen: University of Munich
Roland Beckmann: University of Munich

Nature, 2018, vol. 558, issue 7709, 249-253

Abstract: Abstract The formation of eukaryotic ribosomal subunits extends from the nucleolus to the cytoplasm and entails hundreds of assembly factors. Despite differences in the pathways of ribosome formation, high-resolution structural information has been available only from fungi. Here we present cryo-electron microscopy structures of late-stage human 40S assembly intermediates, representing one state reconstituted in vitro and five native states that range from nuclear to late cytoplasmic. The earliest particles reveal the position of the biogenesis factor RRP12 and distinct immature rRNA conformations that accompany the formation of the 40S subunit head. Molecular models of the late-acting assembly factors TSR1, RIOK1, RIOK2, ENP1, LTV1, PNO1 and NOB1 provide mechanistic details that underlie their contribution to a sequential 40S subunit assembly. The NOB1 architecture displays an inactive nuclease conformation that requires rearrangement of the PNO1-bound 3′ rRNA, thereby coordinating the final rRNA folding steps with site 3 cleavage.

Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
https://www.nature.com/articles/s41586-018-0193-0 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:558:y:2018:i:7709:d:10.1038_s41586-018-0193-0

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/s41586-018-0193-0

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:nature:v:558:y:2018:i:7709:d:10.1038_s41586-018-0193-0