Structural basis for regulation of human acetyl-CoA carboxylase
Moritz Hunkeler (),
Anna Hagmann,
Edward Stuttfeld,
Mohamed Chami,
Yakir Guri,
Henning Stahlberg and
Timm Maier ()
Additional contact information
Moritz Hunkeler: Biozentrum, University of Basel
Anna Hagmann: Biozentrum, University of Basel
Edward Stuttfeld: Biozentrum, University of Basel
Mohamed Chami: Biozentrum, University of Basel
Yakir Guri: Biozentrum, University of Basel
Henning Stahlberg: Biozentrum, University of Basel
Timm Maier: Biozentrum, University of Basel
Nature, 2018, vol. 558, issue 7710, 470-474
Abstract:
Abstract Acetyl-CoA carboxylase catalyses the ATP-dependent carboxylation of acetyl-CoA, a rate-limiting step in fatty acid biosynthesis1,2. Eukaryotic acetyl-CoA carboxylases are large, homodimeric multienzymes. Human acetyl-CoA carboxylase occurs in two isoforms: the metabolic, cytosolic ACC1, and ACC2, which is anchored to the outer mitochondrial membrane and controls fatty acid β-oxidation1,3. ACC1 is regulated by a complex interplay of phosphorylation, binding of allosteric regulators and protein–protein interactions, which is further linked to filament formation1,4–8. These filaments were discovered in vitro and in vivo 50 years ago7,9,10, but the structural basis of ACC1 polymerization and regulation remains unknown. Here, we identify distinct activated and inhibited ACC1 filament forms. We obtained cryo-electron microscopy structures of an activated filament that is allosterically induced by citrate (ACC–citrate), and an inactivated filament form that results from binding of the BRCT domains of the breast cancer type 1 susceptibility protein (BRCA1). While non-polymeric ACC1 is highly dynamic, filament formation locks ACC1 into different catalytically competent or incompetent conformational states. This unique mechanism of enzyme regulation via large-scale conformational changes observed in ACC1 has potential uses in engineering of switchable biosynthetic systems. Dissecting the regulation of acetyl-CoA carboxylase opens new paths towards counteracting upregulation of fatty acid biosynthesis in disease.
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
https://www.nature.com/articles/s41586-018-0201-4 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:558:y:2018:i:7710:d:10.1038_s41586-018-0201-4
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/s41586-018-0201-4
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().