EconPapers    
Economics at your fingertips  
 

Structural basis of G-quadruplex unfolding by the DEAH/RHA helicase DHX36

Michael C. Chen, Ramreddy Tippana, Natalia A. Demeshkina, Pierre Murat, Shankar Balasubramanian, Sua Myong and Adrian R. Ferré-D’Amaré ()
Additional contact information
Michael C. Chen: National Heart, Lung and Blood Institute
Ramreddy Tippana: Johns Hopkins University
Natalia A. Demeshkina: National Heart, Lung and Blood Institute
Pierre Murat: University of Cambridge
Shankar Balasubramanian: University of Cambridge
Sua Myong: Johns Hopkins University
Adrian R. Ferré-D’Amaré: National Heart, Lung and Blood Institute

Nature, 2018, vol. 558, issue 7710, 465-469

Abstract: Abstract Guanine-rich nucleic acid sequences challenge the replication, transcription, and translation machinery by spontaneously folding into G-quadruplexes, the unfolding of which requires forces greater than most polymerases can exert1,2. Eukaryotic cells contain numerous helicases that can unfold G-quadruplexes 3 . The molecular basis of the recognition and unfolding of G-quadruplexes by helicases remains poorly understood. DHX36 (also known as RHAU and G4R1), a member of the DEAH/RHA family of helicases, binds both DNA and RNA G-quadruplexes with extremely high affinity4–6, is consistently found bound to G-quadruplexes in cells7,8, and is a major source of G-quadruplex unfolding activity in HeLa cell lysates 6 . DHX36 is a multi-functional helicase that has been implicated in G-quadruplex-mediated transcriptional and post-transcriptional regulation, and is essential for heart development, haematopoiesis, and embryogenesis in mice9–12. Here we report the co-crystal structure of bovine DHX36 bound to a DNA with a G-quadruplex and a 3′ single-stranded DNA segment. We show that the N-terminal DHX36-specific motif folds into a DNA-binding-induced α-helix that, together with the OB-fold-like subdomain, selectively binds parallel G-quadruplexes. Comparison with unliganded and ATP-analogue-bound DHX36 structures, together with single-molecule fluorescence resonance energy transfer (FRET) analysis, suggests that G-quadruplex binding alone induces rearrangements of the helicase core; by pulling on the single-stranded DNA tail, these rearrangements drive G-quadruplex unfolding one residue at a time.

Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.nature.com/articles/s41586-018-0209-9 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:558:y:2018:i:7710:d:10.1038_s41586-018-0209-9

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/s41586-018-0209-9

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:nature:v:558:y:2018:i:7710:d:10.1038_s41586-018-0209-9