Macromolecular organic compounds from the depths of Enceladus
Frank Postberg (),
Nozair Khawaja,
Bernd Abel,
Gael Choblet,
Christopher R. Glein,
Murthy S. Gudipati,
Bryana L. Henderson,
Hsiang-Wen Hsu,
Sascha Kempf,
Fabian Klenner,
Georg Moragas-Klostermeyer,
Brian Magee,
Lenz Nölle,
Mark Perry,
René Reviol,
Jürgen Schmidt,
Ralf Srama,
Ferdinand Stolz,
Gabriel Tobie,
Mario Trieloff and
J. Hunter Waite
Additional contact information
Frank Postberg: Universität Heidelberg
Nozair Khawaja: Universität Heidelberg
Bernd Abel: Leibniz-Institute für Oberflächenmodifizierung (IOM)
Gael Choblet: Université de Nantes
Christopher R. Glein: Southwest Research Institute
Murthy S. Gudipati: California Institute of Technology
Bryana L. Henderson: California Institute of Technology
Hsiang-Wen Hsu: University of Colorado
Sascha Kempf: University of Colorado
Fabian Klenner: Universität Heidelberg
Georg Moragas-Klostermeyer: Universität Stuttgart
Brian Magee: Southwest Research Institute
Lenz Nölle: Universität Heidelberg
Mark Perry: Johns Hopkins University
René Reviol: Universität Heidelberg
Jürgen Schmidt: University of Oulu
Ralf Srama: Universität Stuttgart
Ferdinand Stolz: Leibniz-Institute für Oberflächenmodifizierung (IOM)
Gabriel Tobie: Université de Nantes
Mario Trieloff: Universität Heidelberg
J. Hunter Waite: Université de Nantes
Nature, 2018, vol. 558, issue 7711, 564-568
Abstract:
Abstract Saturn’s moon Enceladus harbours a global water ocean1, which lies under an ice crust and above a rocky core2. Through warm cracks in the crust3 a cryo-volcanic plume ejects ice grains and vapour into space4–7 that contain materials originating from the ocean8,9. Hydrothermal activity is suspected to occur deep inside the porous core10–12, powered by tidal dissipation13. So far, only simple organic compounds with molecular masses mostly below 50 atomic mass units have been observed in plume material6,14,15. Here we report observations of emitted ice grains containing concentrated and complex macromolecular organic material with molecular masses above 200 atomic mass units. The data constrain the macromolecular structure of organics detected in the ice grains and suggest the presence of a thin organic-rich film on top of the oceanic water table, where organic nucleation cores generated by the bursting of bubbles allow the probing of Enceladus’ organic inventory in enhanced concentrations.
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.nature.com/articles/s41586-018-0246-4 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:558:y:2018:i:7711:d:10.1038_s41586-018-0246-4
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/s41586-018-0246-4
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().