EconPapers    
Economics at your fingertips  
 

Low-temperature crystallization of granites and the implications for crustal magmatism

Michael R. Ackerson (), B. O. Mysen, N. D. Tailby and E. B. Watson
Additional contact information
Michael R. Ackerson: Carnegie Institution of Washington
B. O. Mysen: Carnegie Institution of Washington
N. D. Tailby: American Museum of Natural History
E. B. Watson: Rensselaer Polytechnic Institute

Nature, 2018, vol. 559, issue 7712, 94-97

Abstract: Abstract The structure and composition of granites provide clues to the nature of silicic volcanism, the formation of continents, and the rheological and thermal properties of the Earth's upper crust as far back as the Hadean eon during the nascent stages of the planet’s formation1–4. The temperature of granite crystallization underpins our thinking about many of these phenomena, but evidence is emerging that this temperature may not be well constrained. The prevailing paradigm holds that granitic mineral assemblages crystallize entirely at or above about 650–700 degrees Celsius5–7. The granitoids of the Tuolumne Intrusive Suite in California tell a different story. Here we show that quartz crystals in Tuolumne samples record crystallization temperatures of 474–561 degrees Celsius. Titanium-in-quartz thermobarometry and diffusion modelling of titanium concentrations in quartz indicate that a sizeable proportion of the mineral assemblage of granitic rocks (for example, more than 80 per cent of the quartz) crystallizes about 100–200 degrees Celsius below the accepted solidus. This has widespread implications. Traditional models of magma formation require high-temperature magma bodies, but new data8,9 suggest that volcanic rocks spend most of their existence at low temperatures; because granites are the intrusive complements of volcanic rocks, our downward revision of granite crystallization temperatures supports the observations of cold magma storage. It also affects the link between volcanoes, ore deposits and granites: ore bodies are fed by the release of fluids from granites below them in the crustal column; thus, if granitic fluids are hundreds of degrees cooler than previously thought, this has implications for research on porphyry ore deposits. Geophysical interpretations of the thermal structure of the crust and the temperature of active magmatic systems will also be affected.

Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.nature.com/articles/s41586-018-0264-2 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:559:y:2018:i:7712:d:10.1038_s41586-018-0264-2

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/s41586-018-0264-2

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:nature:v:559:y:2018:i:7712:d:10.1038_s41586-018-0264-2