Observation of the 1S–2P Lyman-α transition in antihydrogen
M. Ahmadi,
B. X. R. Alves,
C. J. Baker,
W. Bertsche,
A. Capra,
C. Carruth,
C. L. Cesar,
M. Charlton,
S. Cohen,
R. Collister,
S. Eriksson,
A. Evans,
N. Evetts,
J. Fajans,
T. Friesen,
M. C. Fujiwara (),
D. R. Gill,
J. S. Hangst (),
W. N. Hardy,
M. E. Hayden,
E. D. Hunter,
C. A. Isaac,
M. A. Johnson,
J. M. Jones,
S. A. Jones,
S. Jonsell,
A. Khramov,
P. Knapp,
L. Kurchaninov,
N. Madsen,
D. Maxwell,
J. T. K. McKenna,
S. Menary,
J. M. Michan,
T. Momose (),
J. J. Munich,
K. Olchanski,
A. Olin,
P. Pusa,
C. Ø. Rasmussen,
F. Robicheaux,
R. L. Sacramento,
M. Sameed,
E. Sarid,
D. M. Silveira,
D. M. Starko,
G. Stutter,
C. So,
T. D. Tharp,
R. I. Thompson,
D. P. Werf and
J. S. Wurtele
Additional contact information
M. Ahmadi: University of Liverpool
B. X. R. Alves: Aarhus University
C. J. Baker: College of Science, Swansea University
W. Bertsche: University of Manchester
A. Capra: TRIUMF
C. Carruth: University of California at Berkeley
C. L. Cesar: Universidade Federal do Rio de Janeiro
M. Charlton: College of Science, Swansea University
S. Cohen: Ben-Gurion University of the Negev
R. Collister: TRIUMF
S. Eriksson: College of Science, Swansea University
A. Evans: University of Calgary
N. Evetts: University of British Columbia
J. Fajans: University of California at Berkeley
T. Friesen: Aarhus University
M. C. Fujiwara: TRIUMF
D. R. Gill: TRIUMF
J. S. Hangst: Aarhus University
W. N. Hardy: University of British Columbia
M. E. Hayden: Simon Fraser University
E. D. Hunter: University of California at Berkeley
C. A. Isaac: College of Science, Swansea University
M. A. Johnson: University of Manchester
J. M. Jones: College of Science, Swansea University
S. A. Jones: Aarhus University
S. Jonsell: Stockholm University
A. Khramov: TRIUMF
P. Knapp: College of Science, Swansea University
L. Kurchaninov: TRIUMF
N. Madsen: College of Science, Swansea University
D. Maxwell: College of Science, Swansea University
J. T. K. McKenna: TRIUMF
S. Menary: York University
J. M. Michan: TRIUMF
T. Momose: University of British Columbia
J. J. Munich: Simon Fraser University
K. Olchanski: TRIUMF
A. Olin: TRIUMF
P. Pusa: University of Liverpool
C. Ø. Rasmussen: Aarhus University
F. Robicheaux: Purdue University
R. L. Sacramento: Universidade Federal do Rio de Janeiro
M. Sameed: University of Manchester
E. Sarid: Soreq NRC
D. M. Silveira: Universidade Federal do Rio de Janeiro
D. M. Starko: York University
G. Stutter: Aarhus University
C. So: University of Calgary
T. D. Tharp: Marquette University
R. I. Thompson: TRIUMF
D. P. Werf: College of Science, Swansea University
J. S. Wurtele: University of California at Berkeley
Nature, 2018, vol. 561, issue 7722, 211-215
Abstract:
Abstract In 1906, Theodore Lyman discovered his eponymous series of transitions in the extreme-ultraviolet region of the atomic hydrogen spectrum1,2. The patterns in the hydrogen spectrum helped to establish the emerging theory of quantum mechanics, which we now know governs the world at the atomic scale. Since then, studies involving the Lyman-α line—the 1S–2P transition at a wavelength of 121.6 nanometres—have played an important part in physics and astronomy, as one of the most fundamental atomic transitions in the Universe. For example, this transition has long been used by astronomers studying the intergalactic medium and testing cosmological models via the so-called ‘Lyman-α forest’3 of absorption lines at different redshifts. Here we report the observation of the Lyman-α transition in the antihydrogen atom, the antimatter counterpart of hydrogen. Using narrow-line-width, nanosecond-pulsed laser radiation, the 1S–2P transition was excited in magnetically trapped antihydrogen. The transition frequency at a field of 1.033 tesla was determined to be 2,466,051.7 ± 0.12 gigahertz (1σ uncertainty) and agrees with the prediction for hydrogen to a precision of 5 × 10−8. Comparisons of the properties of antihydrogen with those of its well-studied matter equivalent allow precision tests of fundamental symmetries between matter and antimatter. Alongside the ground-state hyperfine4,5 and 1S–2S transitions6,7 recently observed in antihydrogen, the Lyman-α transition will permit laser cooling of antihydrogen8,9, thus providing a cold and dense sample of anti-atoms for precision spectroscopy and gravity measurements10. In addition to the observation of this fundamental transition, this work represents both a decisive technological step towards laser cooling of antihydrogen, and the extension of antimatter spectroscopy to quantum states possessing orbital angular momentum.
Keywords: S Hydrogen; Antihydrogen Atoms; Trapped Antihydrogen; Antimatter Counterpart; Silicon Vertex Detector (search for similar items in EconPapers)
Date: 2018
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41586-018-0435-1 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:561:y:2018:i:7722:d:10.1038_s41586-018-0435-1
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/s41586-018-0435-1
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().