EconPapers    
Economics at your fingertips  
 

Absolute timing of the photoelectric effect

M. Ossiander (), J. Riemensberger, S. Neppl, M. Mittermair, M. Schäffer, A. Duensing, M. S. Wagner, R. Heider, M. Wurzer, M. Gerl, M. Schnitzenbaumer, J. V. Barth, F. Libisch, C. Lemell, J. Burgdörfer, P. Feulner and R. Kienberger ()
Additional contact information
M. Ossiander: Technische Universität München
J. Riemensberger: Technische Universität München
S. Neppl: Helmholtz-Zentrum Berlin für Materialien und Energie
M. Mittermair: Technische Universität München
M. Schäffer: Technische Universität München
A. Duensing: Technische Universität München
M. S. Wagner: Technische Universität München
R. Heider: Technische Universität München
M. Wurzer: Technische Universität München
M. Gerl: Technische Universität München
M. Schnitzenbaumer: Technische Universität München
J. V. Barth: Technische Universität München
F. Libisch: Vienna University of Technology
C. Lemell: Vienna University of Technology
J. Burgdörfer: Vienna University of Technology
P. Feulner: Technische Universität München
R. Kienberger: Technische Universität München

Nature, 2018, vol. 561, issue 7723, 374-377

Abstract: Abstract Photoemission spectroscopy is central to understanding the inner workings of condensed matter, from simple metals and semiconductors to complex materials such as Mott insulators and superconductors1. Most state-of-the-art knowledge about such solids stems from spectroscopic investigations, and use of subfemtosecond light pulses can provide a time-domain perspective. For example, attosecond (10−18 seconds) metrology allows electron wave packet creation, transport and scattering to be followed on atomic length scales and on attosecond timescales2–7. However, previous studies could not disclose the duration of these processes, because the arrival time of the photons was not known with attosecond precision. Here we show that this main source of ambiguity can be overcome by introducing the atomic chronoscope method, which references all measured timings to the moment of light-pulse arrival and therefore provides absolute timing of the processes under scrutiny. Our proof-of-principle experiment reveals that photoemission from the tungsten conduction band can proceed faster than previously anticipated. By contrast, the duration of electron emanation from core states is correctly described by semiclassical modelling. These findings highlight the necessity of treating the origin, initial excitation and transport of electrons in advanced modelling of the attosecond response of solids, and our absolute data provide a benchmark. Starting from a robustly characterized surface, we then extend attosecond spectroscopy towards isolating the emission properties of atomic adsorbates on surfaces and demonstrate that these act as photoemitters with instantaneous response. We also find that the tungsten core-electron timing remains unchanged by the adsorption of less than one monolayer of dielectric atoms, providing a starting point for the exploration of excitation and charge migration in technologically and biologically relevant adsorbate systems.

Keywords: Chronoscope; Electron Wave Packet; Attosecond Precision; Exit Delay; Giant Dipole Resonance (search for similar items in EconPapers)
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.nature.com/articles/s41586-018-0503-6 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:561:y:2018:i:7723:d:10.1038_s41586-018-0503-6

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/s41586-018-0503-6

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:nature:v:561:y:2018:i:7723:d:10.1038_s41586-018-0503-6