The role of miniaturization in the evolution of the mammalian jaw and middle ear
Stephan Lautenschlager (),
Pamela G. Gill,
Zhe-Xi Luo,
Michael J. Fagan and
Emily J. Rayfield ()
Additional contact information
Stephan Lautenschlager: School of Earth Sciences, University of Bristol
Pamela G. Gill: School of Earth Sciences, University of Bristol
Zhe-Xi Luo: University of Chicago
Michael J. Fagan: School of Engineering and Computer Science, University of Hull
Emily J. Rayfield: School of Earth Sciences, University of Bristol
Nature, 2018, vol. 561, issue 7724, 533-537
Abstract:
Abstract The evolution of the mammalian jaw is one of the most important innovations in vertebrate history, and underpins the exceptional radiation and diversification of mammals over the last 220 million years1,2. In particular, the transformation of the mandible into a single tooth-bearing bone and the emergence of a novel jaw joint—while incorporating some of the ancestral jaw bones into the mammalian middle ear—is often cited as a classic example of the repurposing of morphological structures3,4. Although it is remarkably well-documented in the fossil record, the evolution of the mammalian jaw still poses the paradox of how the bones of the ancestral jaw joint could function both as a joint hinge for powerful load-bearing mastication and as a mandibular middle ear that was delicate enough for hearing. Here we use digital reconstructions, computational modelling and biomechanical analyses to demonstrate that the miniaturization of the early mammalian jaw was the primary driver for the transformation of the jaw joint. We show that there is no evidence for a concurrent reduction in jaw-joint stress and increase in bite force in key non-mammaliaform taxa in the cynodont–mammaliaform transition, as previously thought5–8. Although a shift in the recruitment of the jaw musculature occurred during the evolution of modern mammals, the optimization of mandibular function to increase bite force while reducing joint loads did not occur until after the emergence of the neomorphic mammalian jaw joint. This suggests that miniaturization provided a selective regime for the evolution of the mammalian jaw joint, followed by the integration of the postdentary bones into the mammalian middle ear.
Keywords: Bite Force; Postdentary Bones; Cynodontis; Reduce Joint Loading; Modern Mammals (search for similar items in EconPapers)
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.nature.com/articles/s41586-018-0521-4 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:561:y:2018:i:7724:d:10.1038_s41586-018-0521-4
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/s41586-018-0521-4
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().