Water input into the Mariana subduction zone estimated from ocean-bottom seismic data
Chen Cai (),
Douglas A. Wiens,
Weisen Shen and
Melody Eimer
Additional contact information
Chen Cai: Washington University in St Louis
Douglas A. Wiens: Washington University in St Louis
Weisen Shen: Washington University in St Louis
Melody Eimer: Washington University in St Louis
Nature, 2018, vol. 563, issue 7731, 389-392
Abstract:
Abstract The water cycle at subduction zones remains poorly understood, although subduction is the only mechanism for water transport deep into Earth. Previous estimates of water flux1–3 exhibit large variations in the amount of water that is subducted deeper than 100 kilometres. The main source of uncertainty in these calculations is the initial water content of the subducting uppermost mantle. Previous active-source seismic studies suggest that the subducting slab may be pervasively hydrated in the plate-bending region near the oceanic trench4–7. However, these studies do not constrain the depth extent of hydration and most investigate young incoming plates, leaving subduction-zone water budgets for old subducting plates uncertain. Here we present seismic images of the crust and uppermost mantle around the central Mariana trench derived from Rayleigh-wave analysis of broadband ocean-bottom seismic data. These images show that the low mantle velocities that result from mantle hydration extend roughly 24 kilometres beneath the Moho discontinuity. Combined with estimates of subducting crustal water, these results indicate that at least 4.3 times more water subducts than previously calculated for this region3. If other old, cold subducting slabs contain correspondingly thick layers of hydrous mantle, as suggested by the similarity of incoming plate faulting across old, cold subducting slabs, then estimates of the global water flux into the mantle at depths greater than 100 kilometres must be increased by a factor of about three compared to previous estimates3. Because a long-term net influx of water to the deep interior of Earth is inconsistent with the geological record8, estimates of water expelled at volcanic arcs and backarc basins probably also need to be revised upwards9.
Keywords: Incoming Plate; Plate Subduction; Bending Faults; Lizardite; Ocean Bottom Seismographs (search for similar items in EconPapers)
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://www.nature.com/articles/s41586-018-0655-4 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:563:y:2018:i:7731:d:10.1038_s41586-018-0655-4
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/s41586-018-0655-4
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().