Efficient radical-based light-emitting diodes with doublet emission
Xin Ai,
Emrys W. Evans,
Shengzhi Dong,
Alexander J. Gillett,
Haoqing Guo,
Yingxin Chen,
Timothy J. H. Hele,
Richard H. Friend () and
Feng Li ()
Additional contact information
Xin Ai: College of Chemistry, Jilin University
Emrys W. Evans: University of Cambridge
Shengzhi Dong: College of Chemistry, Jilin University
Alexander J. Gillett: University of Cambridge
Haoqing Guo: College of Chemistry, Jilin University
Yingxin Chen: College of Chemistry, Jilin University
Timothy J. H. Hele: University of Cambridge
Richard H. Friend: University of Cambridge
Feng Li: College of Chemistry, Jilin University
Nature, 2018, vol. 563, issue 7732, 536-540
Abstract:
Abstract Organic light-emitting diodes (OLEDs)1–5, quantum-dot-based LEDs6–10, perovskite-based LEDs11–13 and micro-LEDs14,15 have been championed to fabricate lightweight and flexible units for next-generation displays and active lighting. Although there are already some high-end commercial products based on OLEDs, costs must decrease whilst maintaining high operational efficiencies for the technology to realise wider impact. Here we demonstrate efficient action of radical-based OLEDs16, whose emission originates from a spin doublet, rather than a singlet or triplet exciton. While the emission process is still spin-allowed in these OLEDs, the efficiency limitations imposed by triplet excitons are circumvented for doublets. Using a luminescent radical emitter, we demonstrate an OLED with maximum external quantum efficiency of 27 per cent at a wavelength of 710 nanometres—the highest reported value for deep-red and infrared LEDs. For a standard closed-shell organic semiconductor, holes and electrons occupy the highest occupied and lowest unoccupied molecular orbitals (HOMOs and LUMOs), respectively, and recombine to form singlet or triplet excitons. Radical emitters have a singly occupied molecular orbital (SOMO) in the ground state, giving an overall spin-1/2 doublet. If—as expected on energetic grounds—both electrons and holes occupy this SOMO level, recombination returns the system to the ground state, giving no light emission. However, in our very efficient OLEDs, we achieve selective hole injection into the HOMO and electron injection to the SOMO to form the fluorescent doublet excited state with near-unity internal quantum efficiency.
Keywords: Singly Occupied Molecular Orbital (SOMO); Organic Light-emitting Diodes (OLEDs); Excited Doublet State; Luminescent Groups; Triplet Excitons (search for similar items in EconPapers)
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
https://www.nature.com/articles/s41586-018-0695-9 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:563:y:2018:i:7732:d:10.1038_s41586-018-0695-9
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/s41586-018-0695-9
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().