Type 9 secretion system structures reveal a new protein transport mechanism
Frédéric Lauber,
Justin C. Deme,
Susan M. Lea () and
Ben C. Berks ()
Additional contact information
Frédéric Lauber: University of Oxford
Justin C. Deme: University of Oxford
Susan M. Lea: University of Oxford
Ben C. Berks: University of Oxford
Nature, 2018, vol. 564, issue 7734, 77-82
Abstract:
Abstract The type 9 secretion system (T9SS) is the protein export pathway of bacteria of the Gram-negative Fibrobacteres–Chlorobi–Bacteroidetes superphylum and is an essential determinant of pathogenicity in severe periodontal disease. The central element of the T9SS is a so-far uncharacterized protein-conducting translocon located in the bacterial outer membrane. Here, using cryo-electron microscopy, we provide structural evidence that the translocon is the T9SS protein SprA. SprA forms an extremely large (36-strand) single polypeptide transmembrane β-barrel. The barrel pore is capped on the extracellular end, but has a lateral opening to the external membrane surface. Structures of SprA bound to different components of the T9SS show that partner proteins control access to the lateral opening and to the periplasmic end of the pore. Our results identify a protein transporter with a distinctive architecture that uses an alternating access mechanism in which the two ends of the protein-conducting channel are open at different times.
Keywords: Type 3 Secretion System (T9SS); Translocon; Protein-conducting Channel; Po Rv; Protein Plugs (search for similar items in EconPapers)
Date: 2018
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41586-018-0693-y Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:564:y:2018:i:7734:d:10.1038_s41586-018-0693-y
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/s41586-018-0693-y
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().