The hippocampus is crucial for forming non-hippocampal long-term memory during sleep
Anuck Sawangjit,
Carlos N. Oyanedel,
Niels Niethard,
Carolina Salazar,
Jan Born () and
Marion Inostroza ()
Additional contact information
Anuck Sawangjit: University of Tübingen
Carlos N. Oyanedel: University of Tübingen
Niels Niethard: University of Tübingen
Carolina Salazar: University of Tübingen
Jan Born: University of Tübingen
Marion Inostroza: University of Tübingen
Nature, 2018, vol. 564, issue 7734, 109-113
Abstract:
Abstract There is a long-standing division in memory research between hippocampus-dependent memory and non-hippocampus-dependent memory, as only the latter can be acquired and retrieved in the absence of normal hippocampal function1,2. Consolidation of hippocampus-dependent memory, in particular, is strongly supported by sleep3–5. Here we show that the formation of long-term representations in a rat model of non-hippocampus-dependent memory depends not only on sleep but also on activation of a hippocampus-dependent mechanism during sleep. Rats encoded non-hippocampus-dependent (novel-object recognition6–8) and hippocampus-dependent (object–place recognition) memories before a two-hour period of sleep or wakefulness. Memory was tested either immediately thereafter or remotely (after one or three weeks). Whereas object–place recognition memory was stronger for rats that had slept after encoding (rather than being awake) at both immediate and remote testing, novel-object recognition memory profited from sleep only three weeks after encoding, at which point it was preserved in rats that had slept after encoding but not in those that had been awake. Notably, inactivation of the hippocampus during post-encoding sleep by intrahippocampal injection of muscimol abolished the sleep-induced enhancement of remote novel-object recognition memory. By contrast, muscimol injection before remote retrieval or memory encoding had no effect on test performance, confirming that the encoding and retrieval of novel-object recognition memory are hippocampus-independent. Remote novel-object recognition memory was associated with spindle activity during post-encoding slow-wave sleep, consistent with the view that neuronal memory replay during slow-wave sleep contributes to long-term memory formation. Our results indicate that the hippocampus has an important role in long-term consolidation during sleep even for memories that have previously been considered hippocampus-independent.
Keywords: Object Place Recognition (OPR); Muscimol; Hippocampus-dependent Memory; Remote Testing; Discrimination Ratio (search for similar items in EconPapers)
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://www.nature.com/articles/s41586-018-0716-8 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:564:y:2018:i:7734:d:10.1038_s41586-018-0716-8
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/s41586-018-0716-8
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().